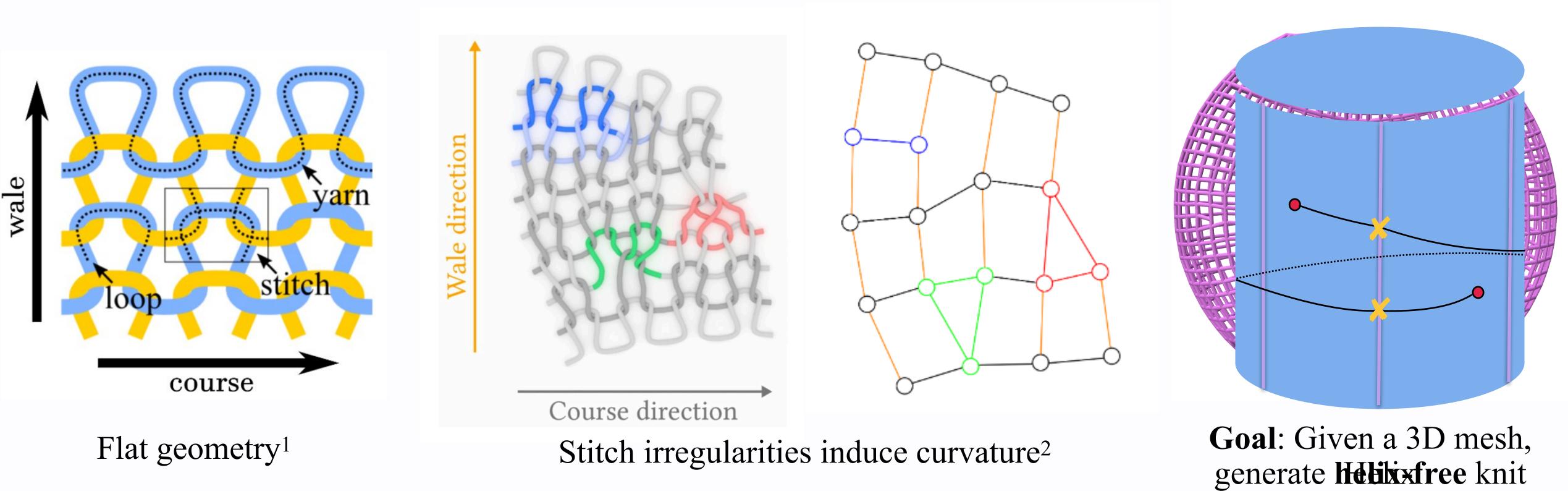
Singular Foliations for Knit Graph Design

Rahul Mitra¹, Erick Jimenez Berumen¹, Megan Hoffman², **Edward Chien¹**

heastern University

Knit Graph Abstraction



¹ from Visual Knitting Machine Programming (2019) ²from Knit Sketching: from Cut and Sew Patterns to Machine-Knit Garments (2021)

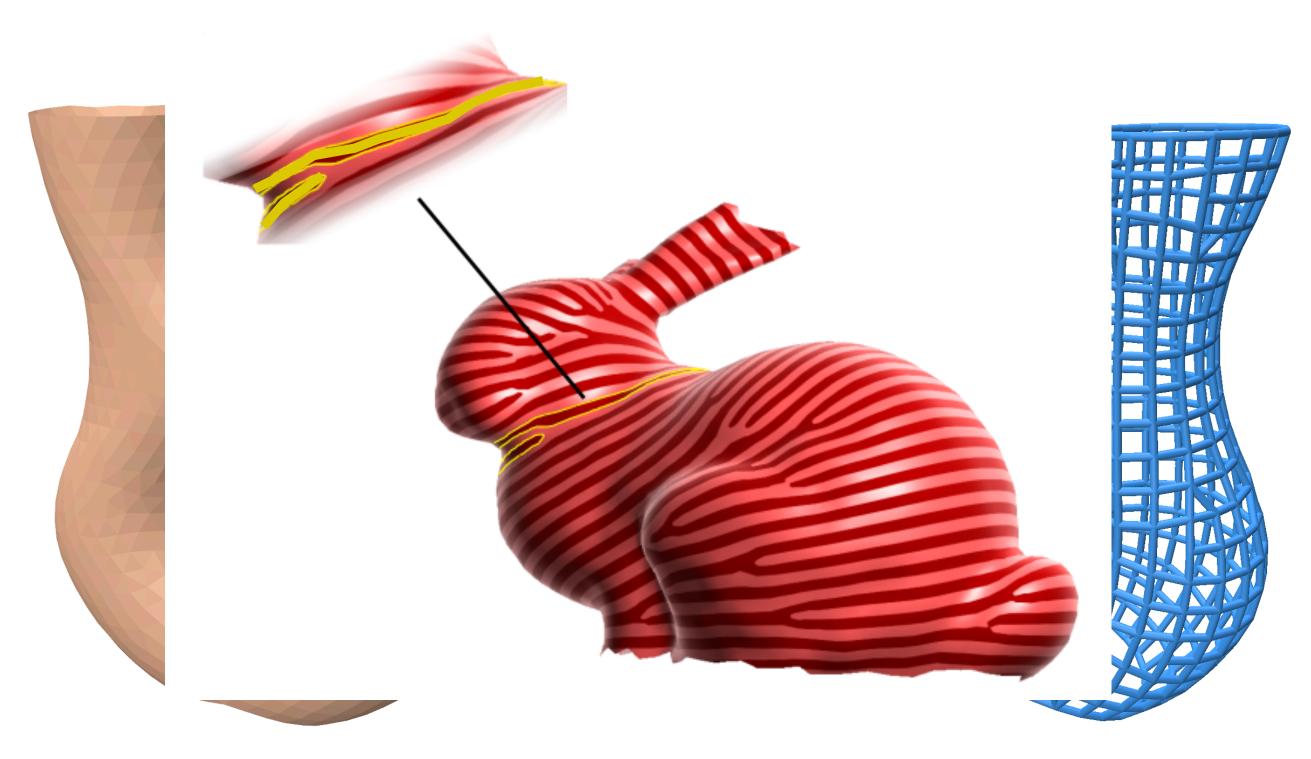
graph over it

2

Positioning our work

- Goal: Input 3D model → whole garment machine-knittable graphs
 - Similar works: Autoknit [Naryanan et al. 2018], KnitKit [Nader et al. 2021], Helix-free Stripes [Mitra et al. 2023]
- Stripe patterns for knitting

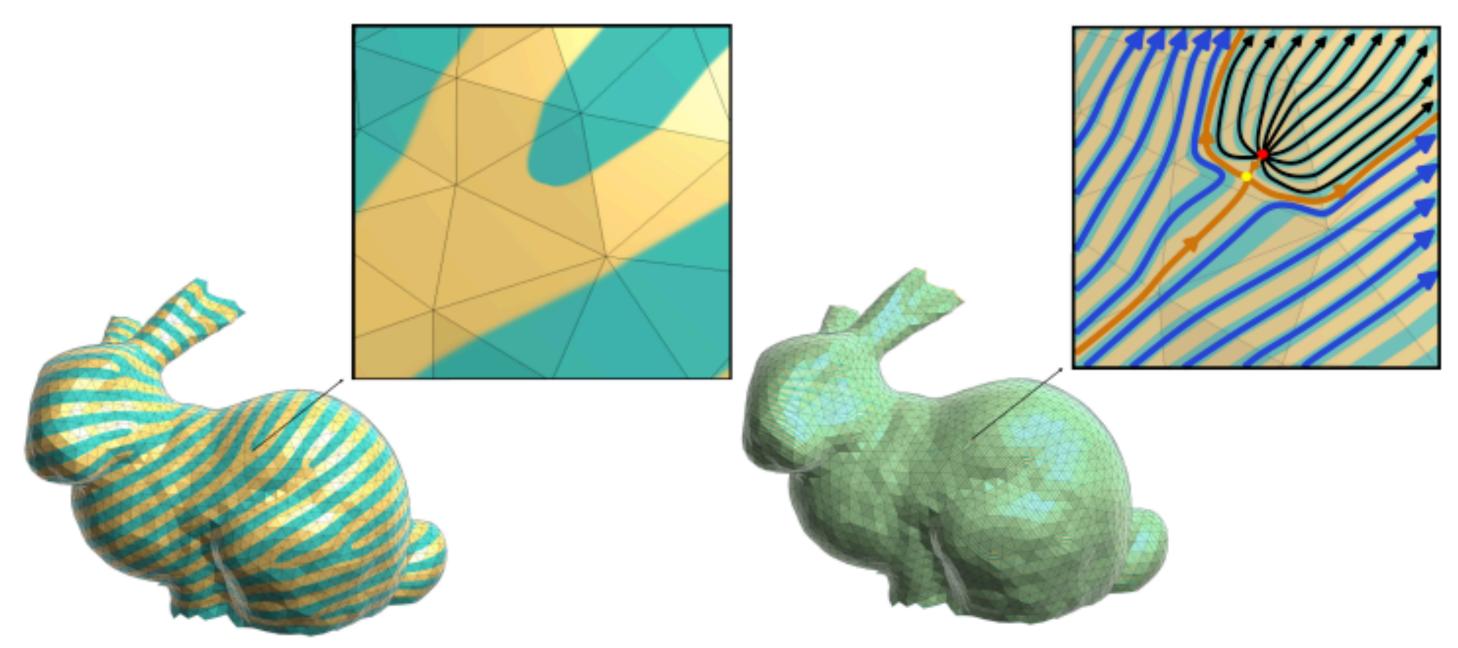
 - KnitKit [Nader et al. 2021] Quad mesh operators
 - Helix-free Stripes [Mitra et al. 2023] Several linear constraints for helix-removal



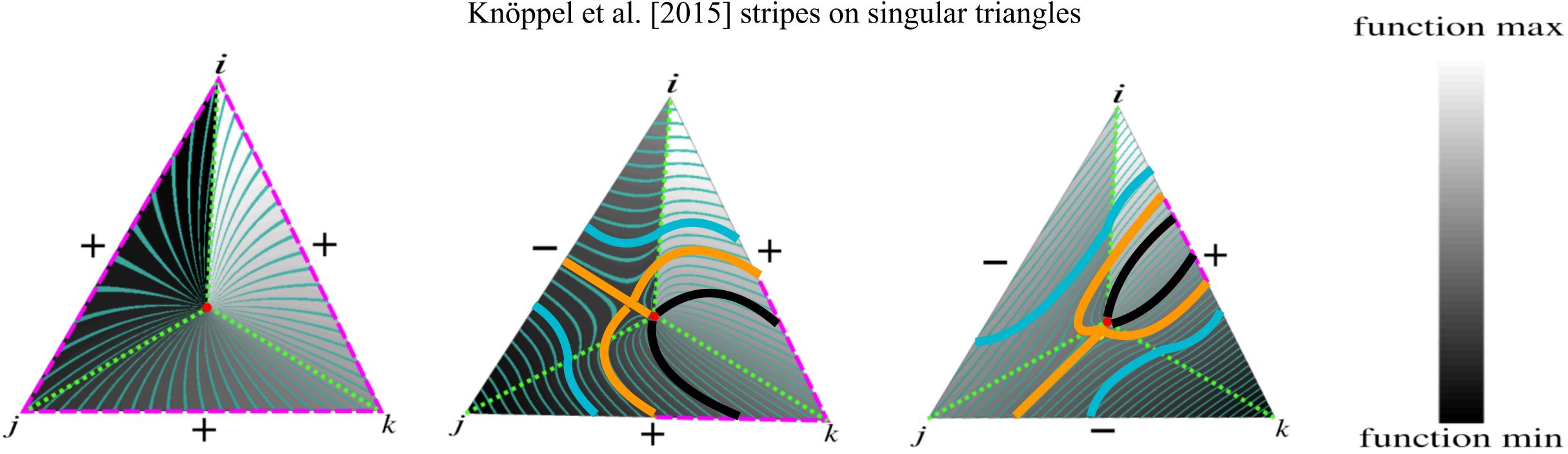
Knöppel et al. [2015]

Extensions to our previous work

- Stripe patterns as oriented foliations (integral curves of vector field)
 - Can remove helicing of any stripe integral curve
 - Previous work can remove helicing in only certain integral curves
- Automatic matching of singular triangles
 - Minimum weight matching problem
 - Customized weights

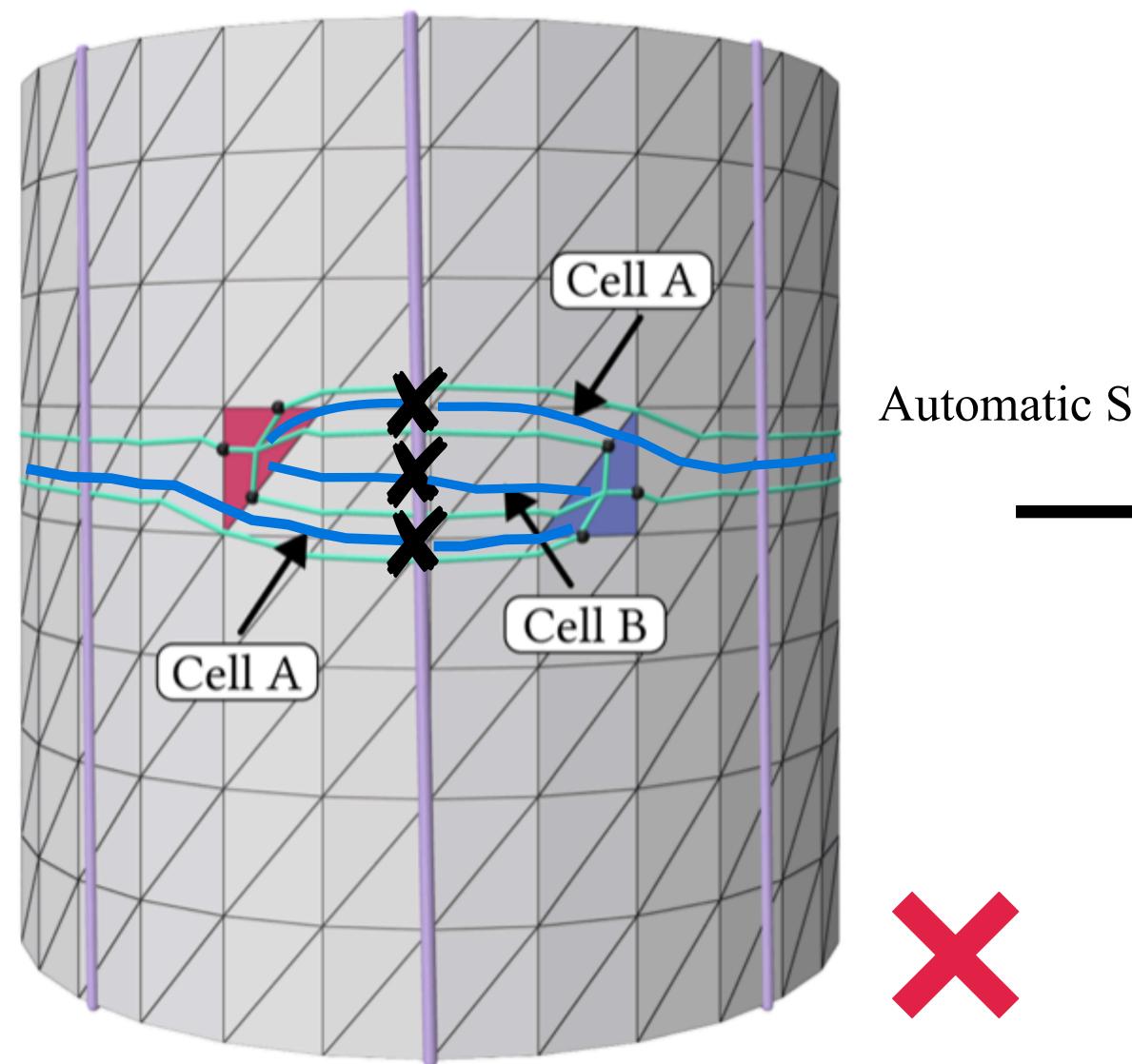


Foliation Behavior over Singular Triangles

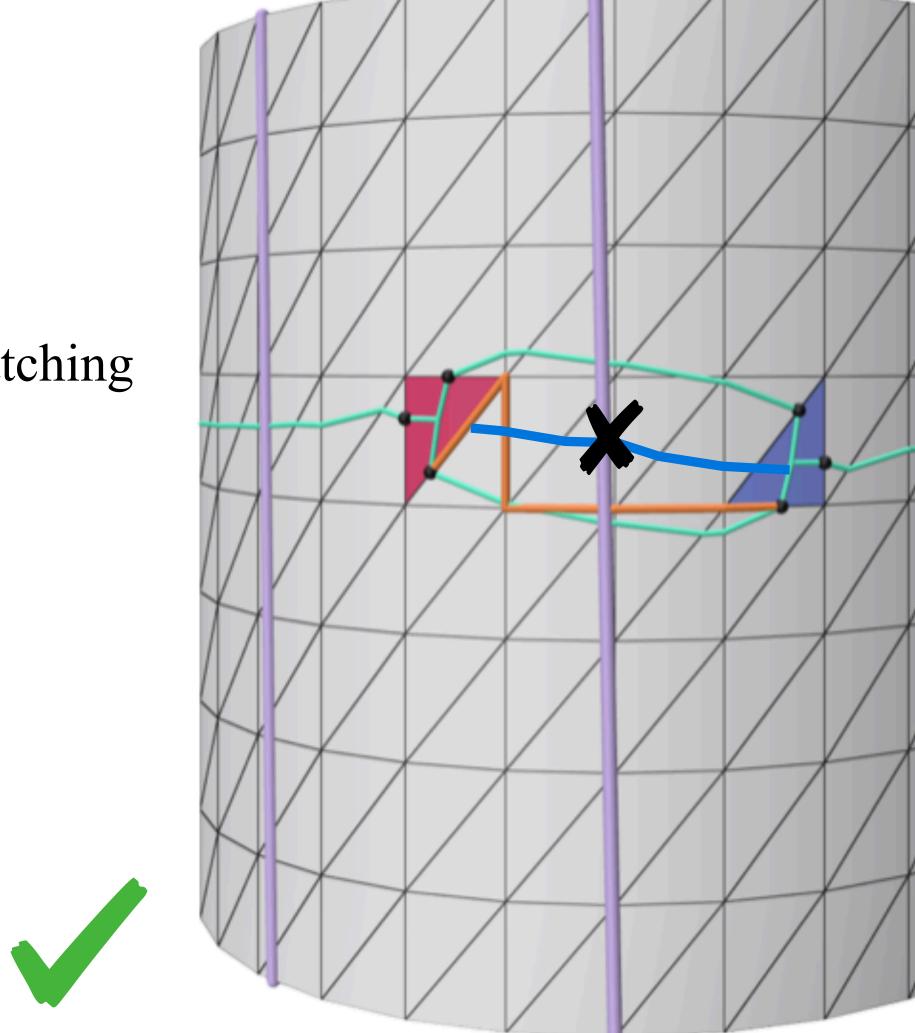


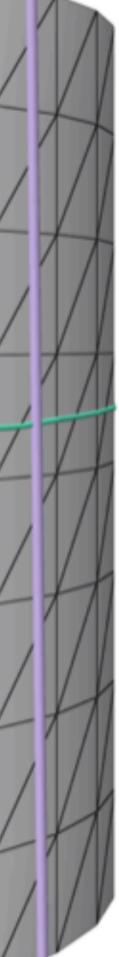
• Upshot: Exact characterization of where the separatrices hit the boundary • Matching separatrices enforces helix-free condition

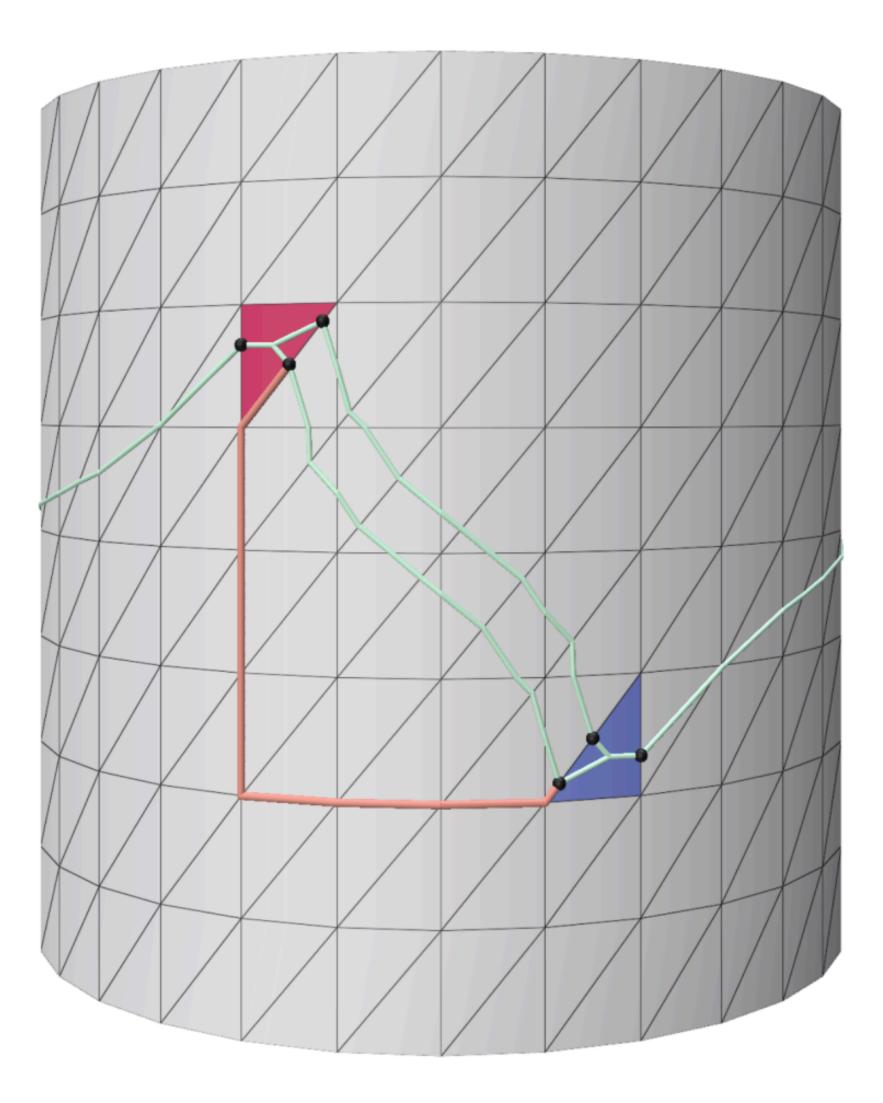
Precise Topological Control of Stripes



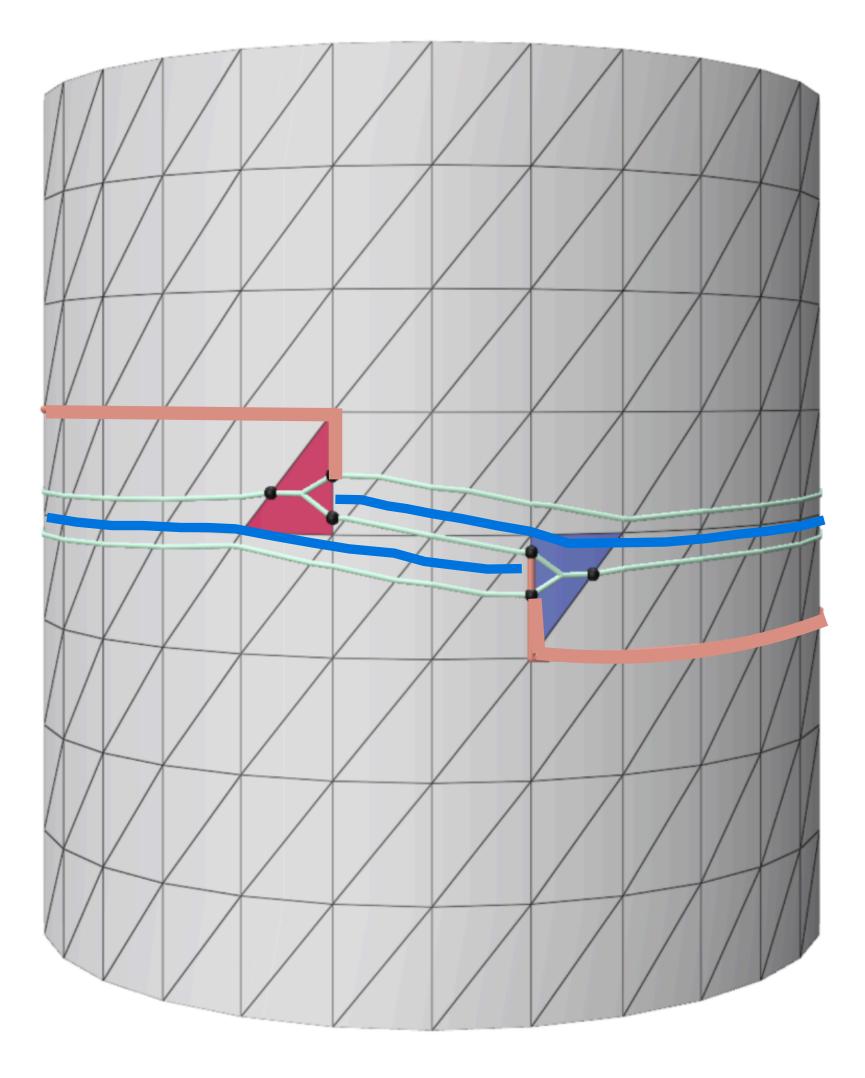
Automatic Separatrix Matching

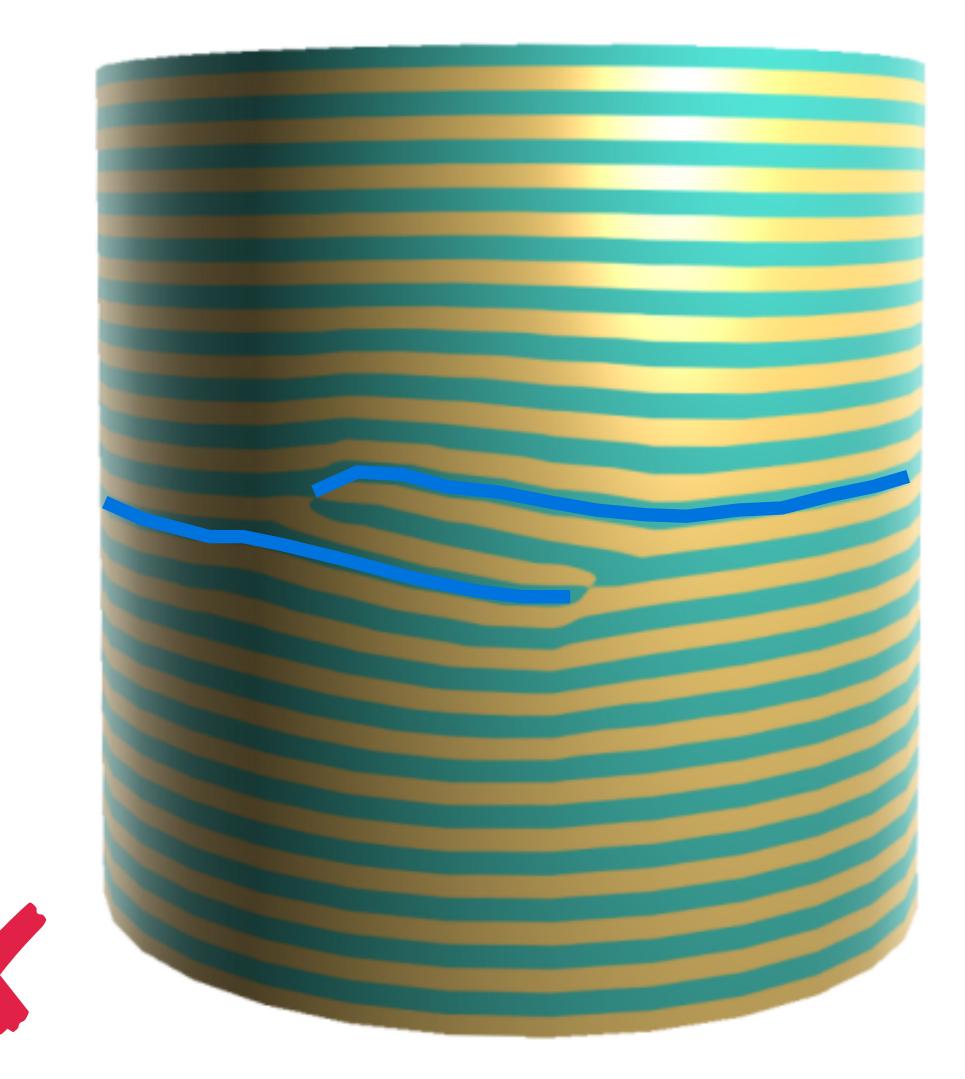


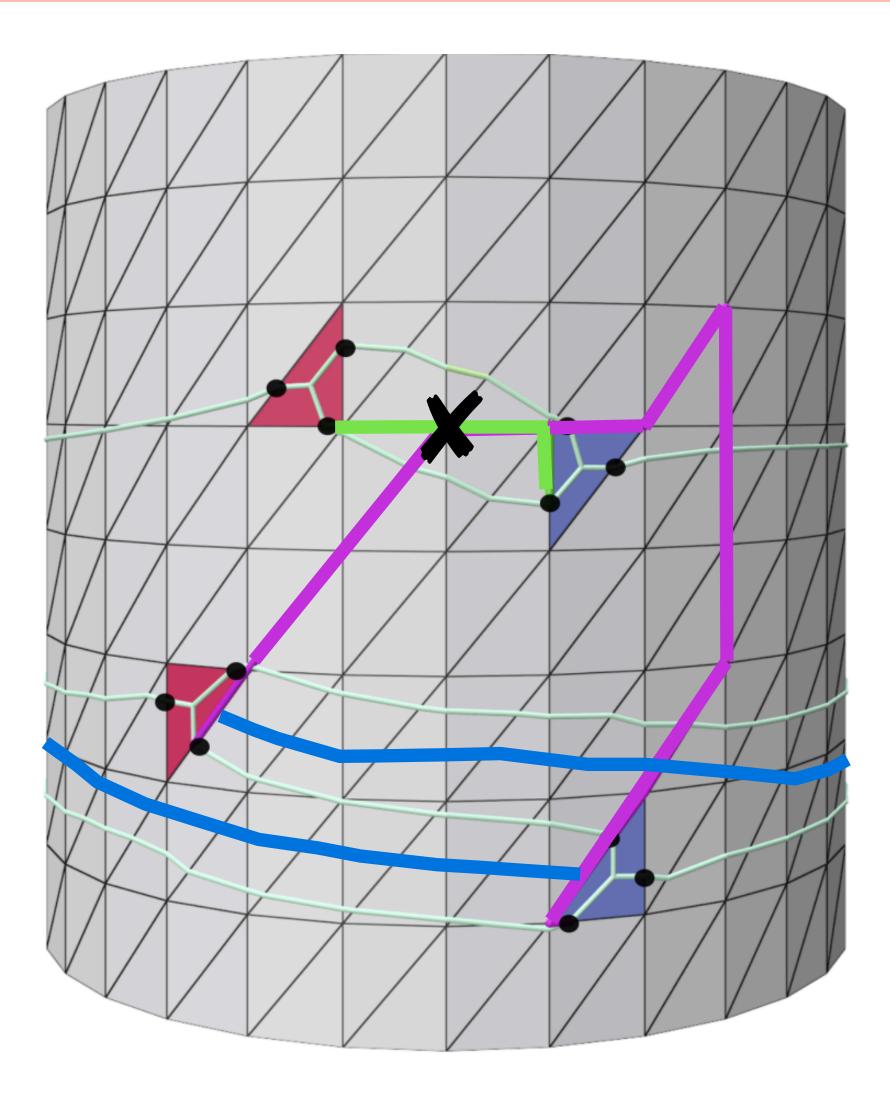


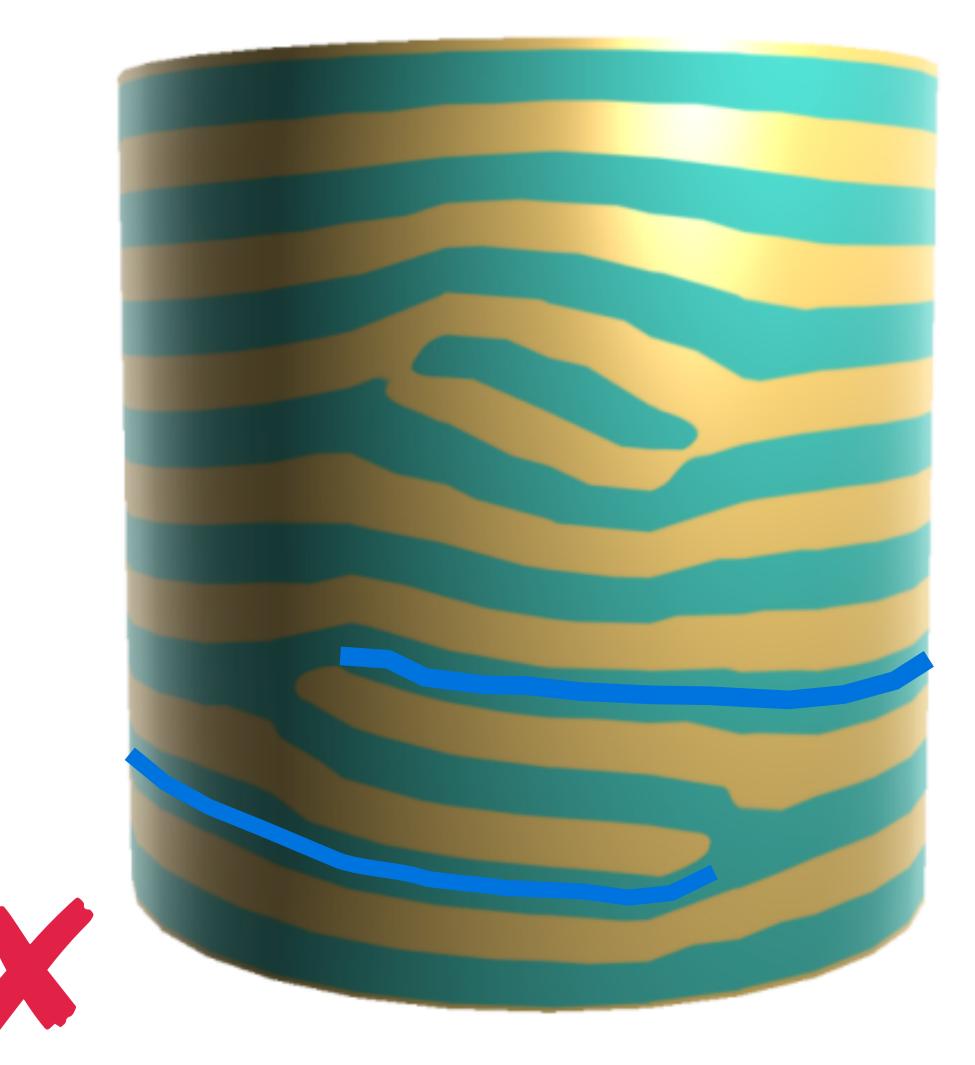


h

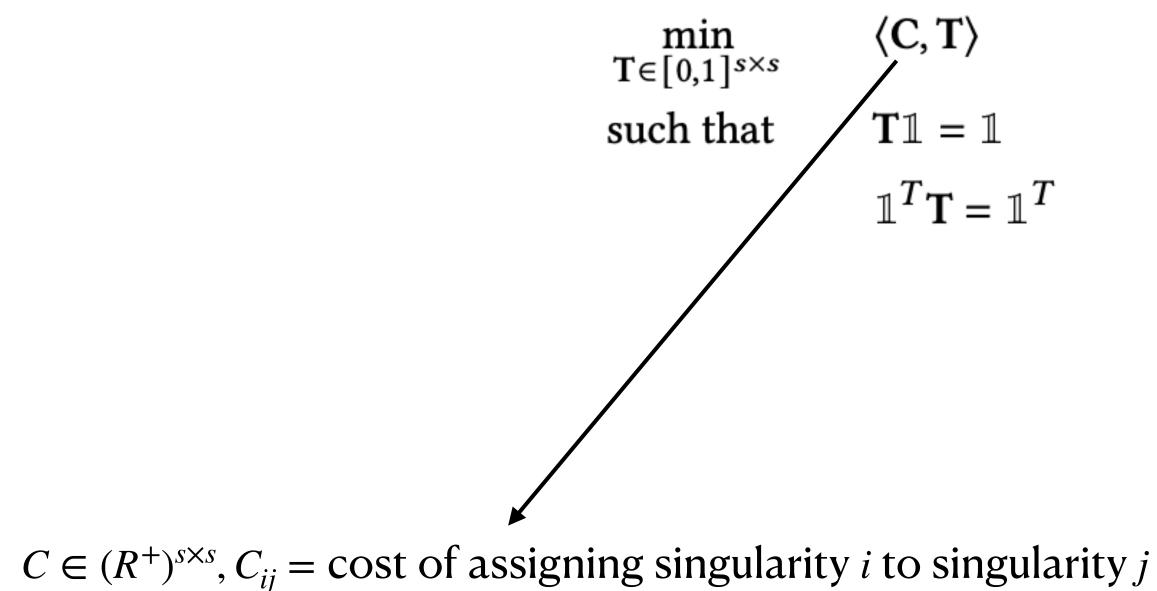




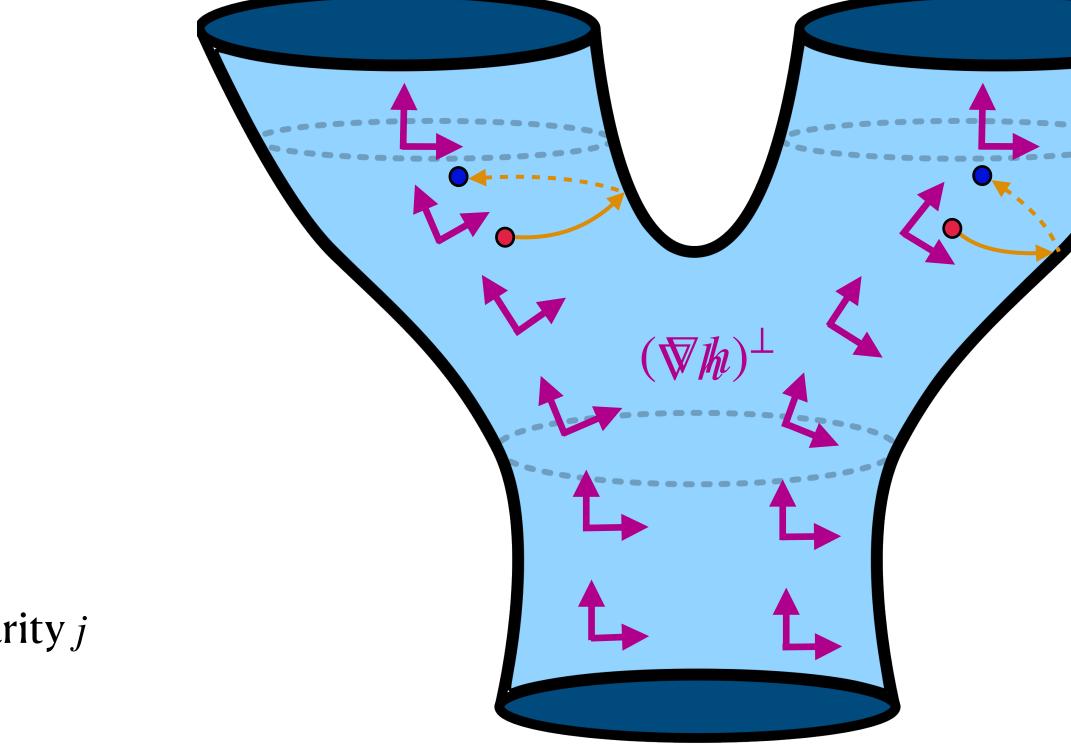


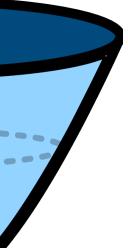


• Minimum weight matching LP

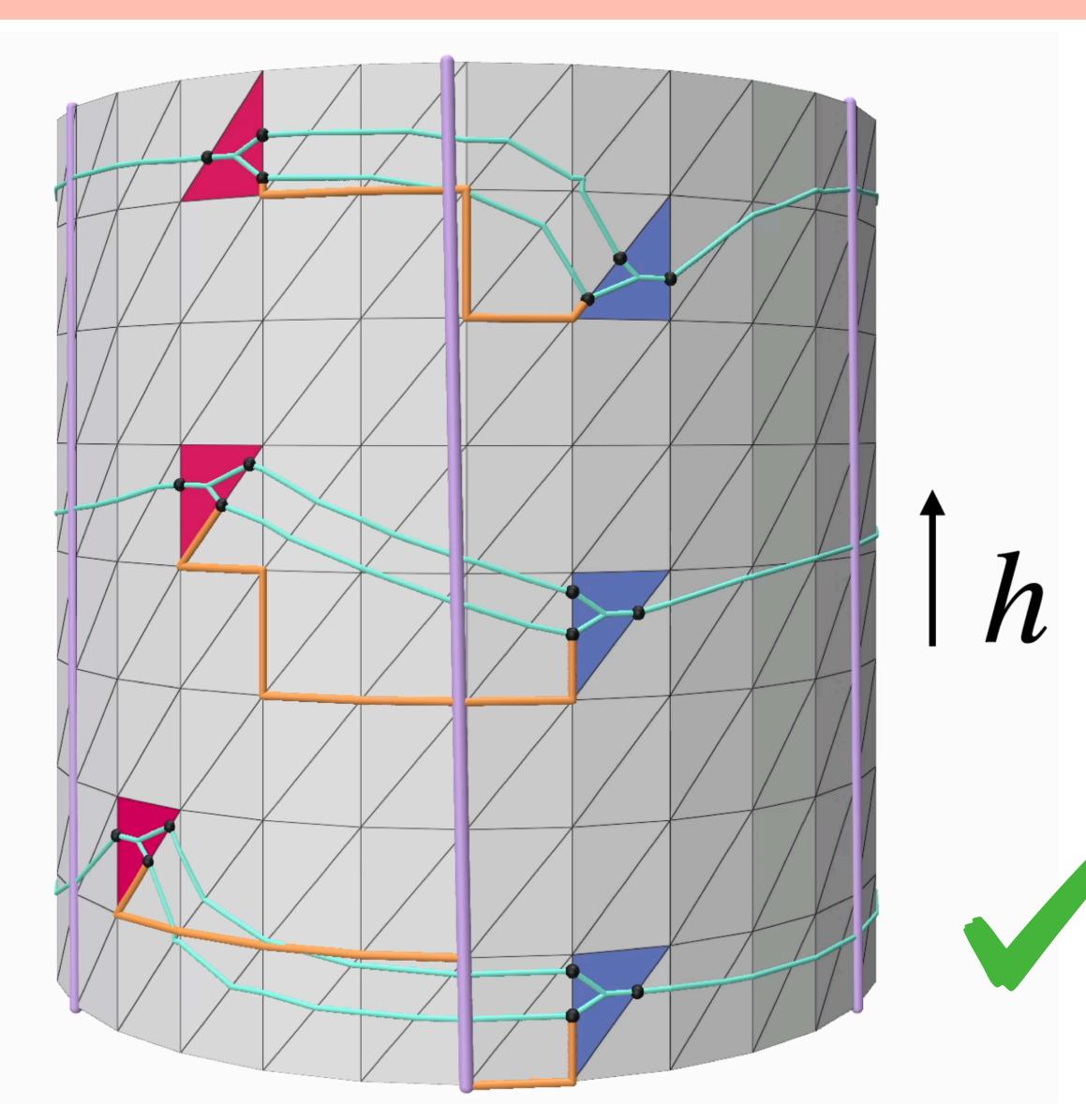


 $\mathbb{1}^T \mathbf{T} = \mathbb{1}^T$





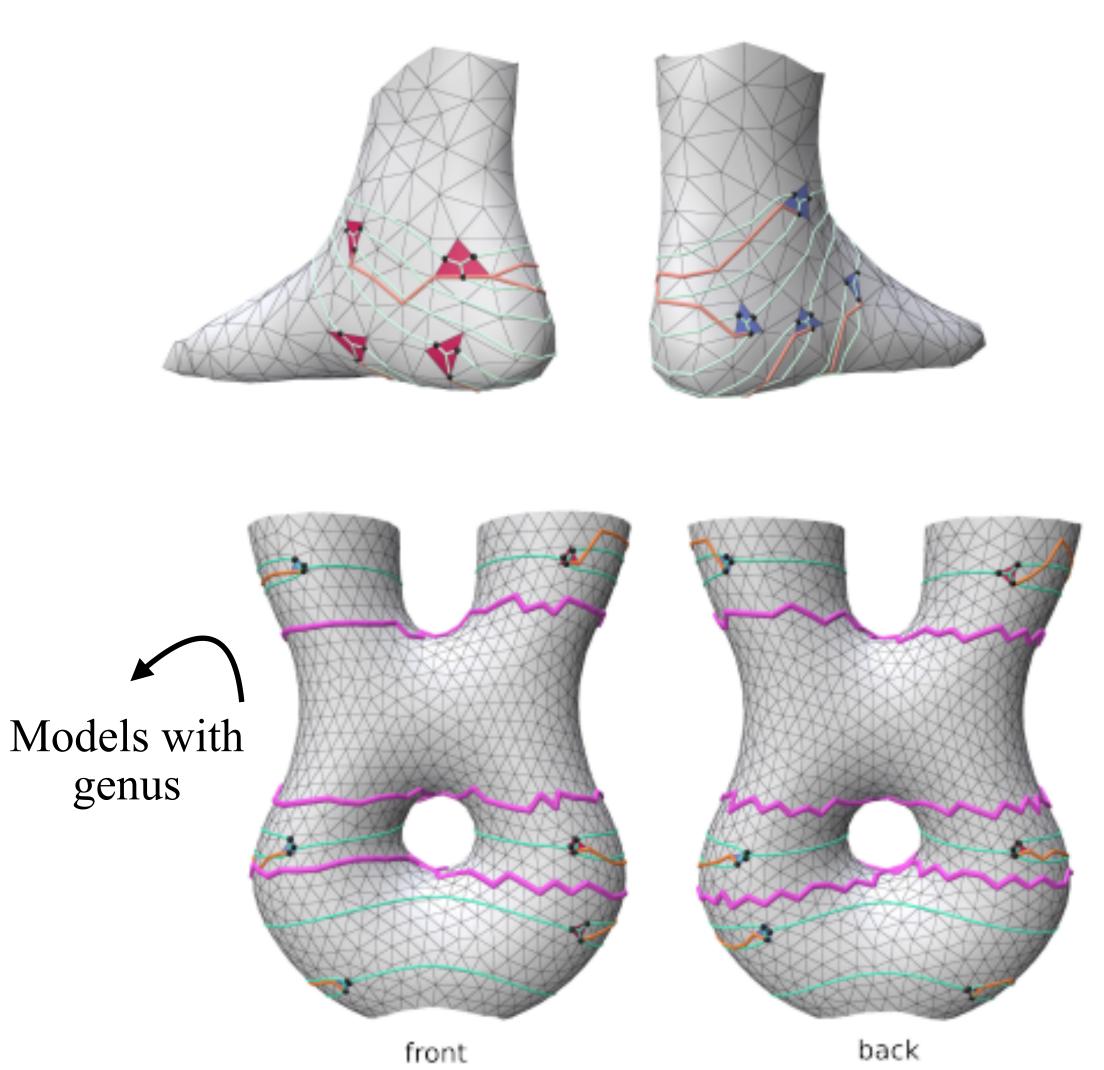
Automatic Singularity Matching - Result



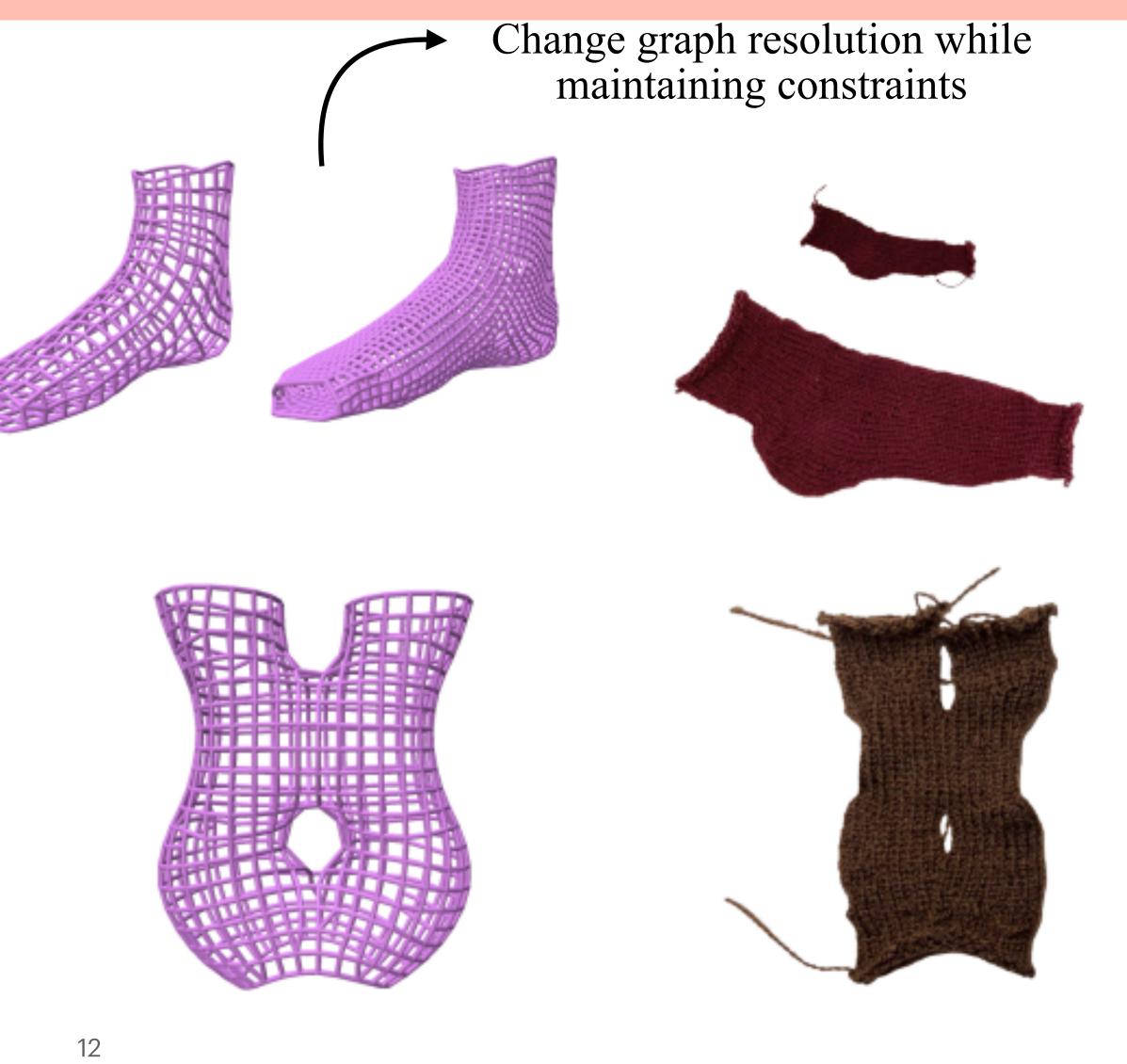
• Singularities on the same isoline matched

• Path constraints flow from positive singularity to negative singularity

• Non-intersecting path constraints

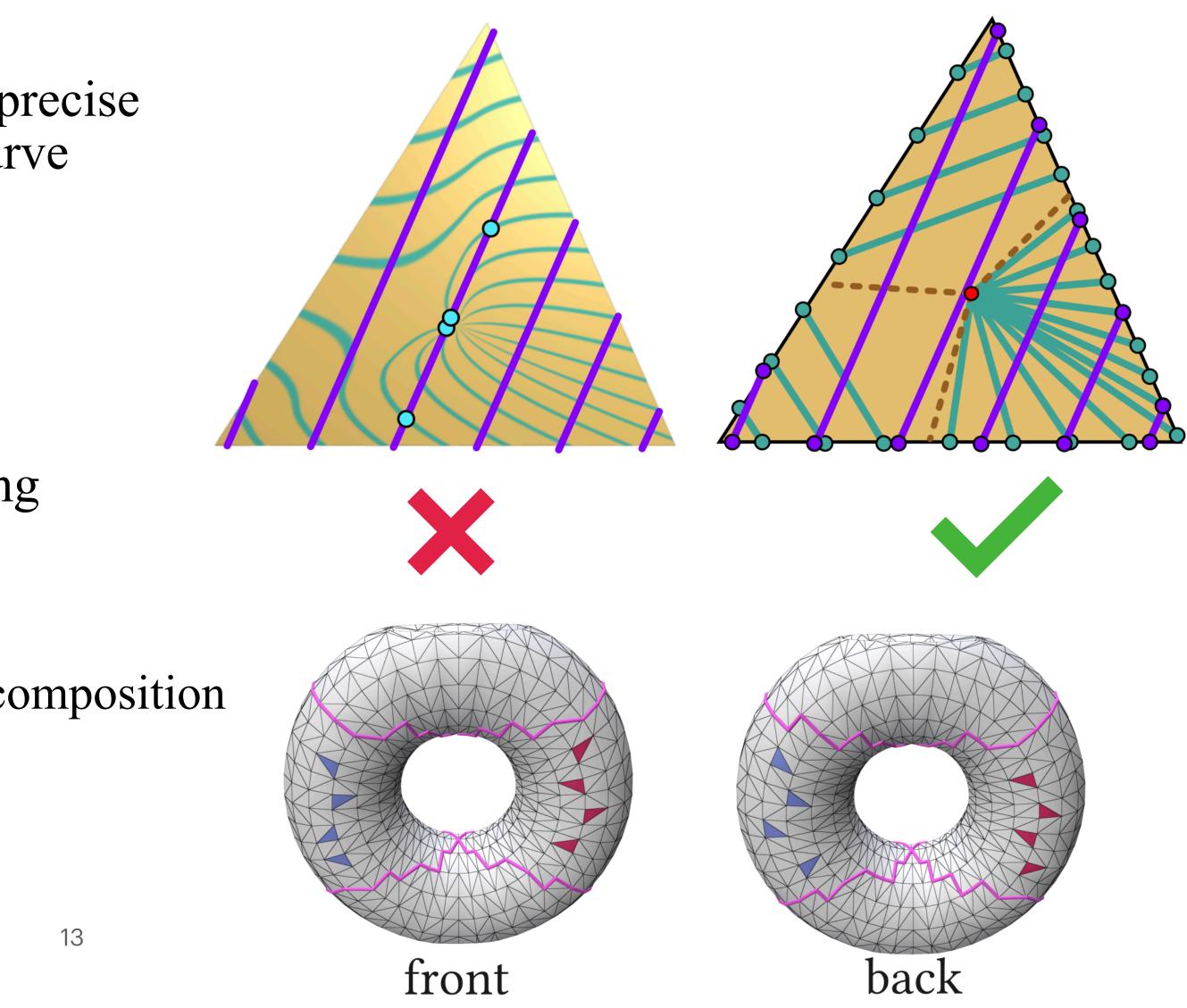


Results

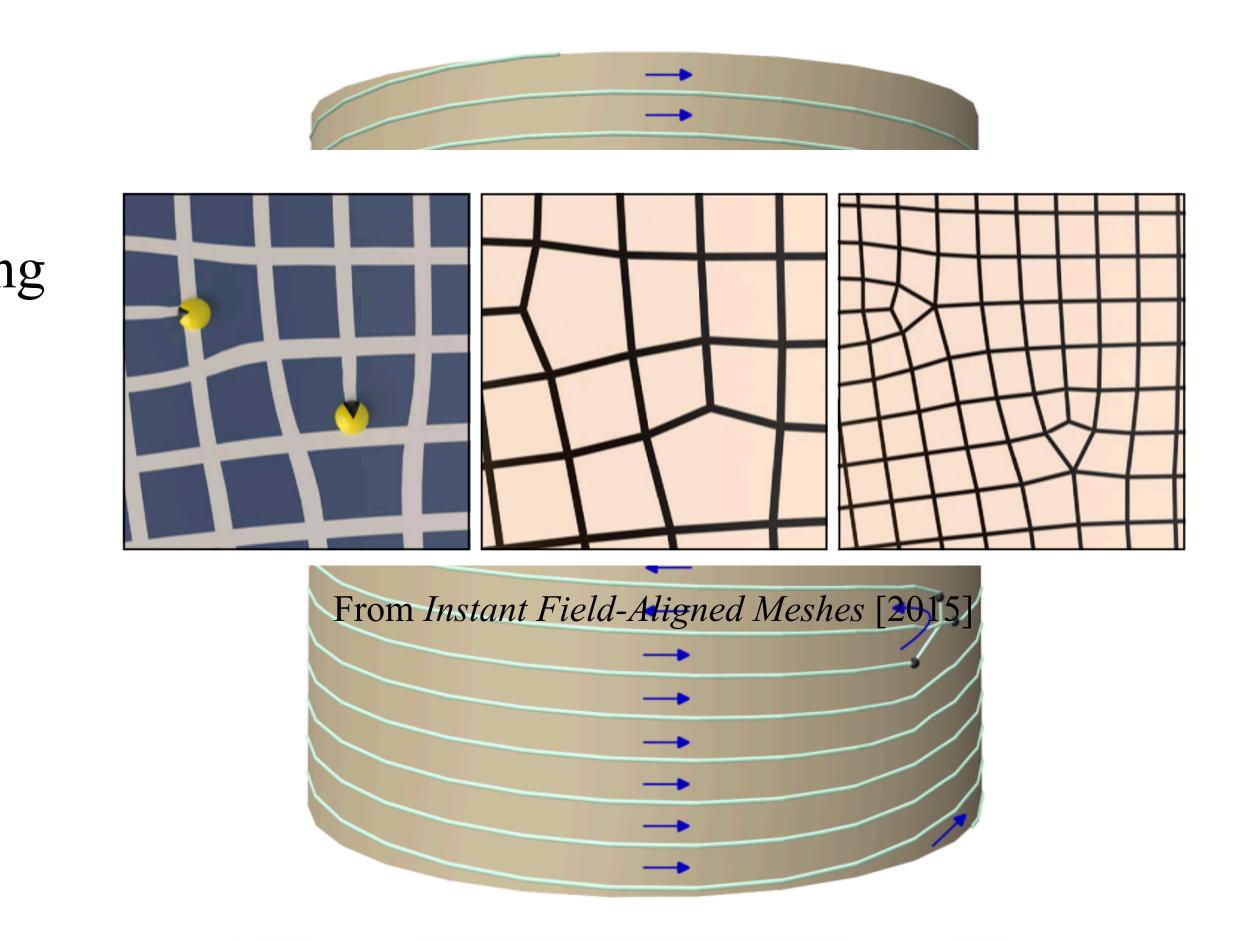


- Stripe patterns as foliations to achieve more precise control preventing helicing of **any** integral curve
- Automatic matching of singular triangles
- Effective Interpolant for robust stripe tracing

• Extension to models with genus via Morse decomposition

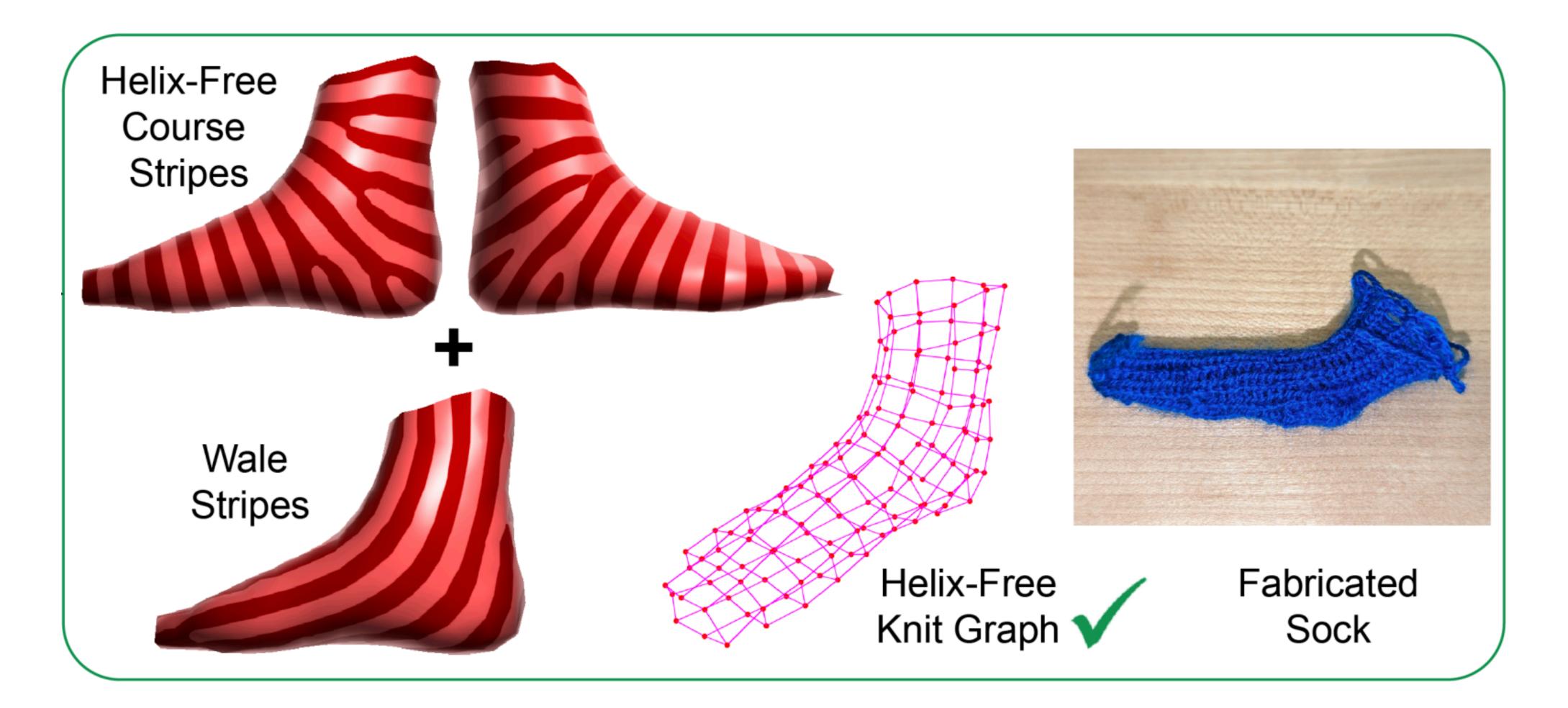


- Stripe singularities
 - Generation?
 - Optimal Placement?
 - Position singularities in quad-dominant meshing
 - Curl quantization
- Tracing-free pipeline
 - Tracing actually takes place as a helix

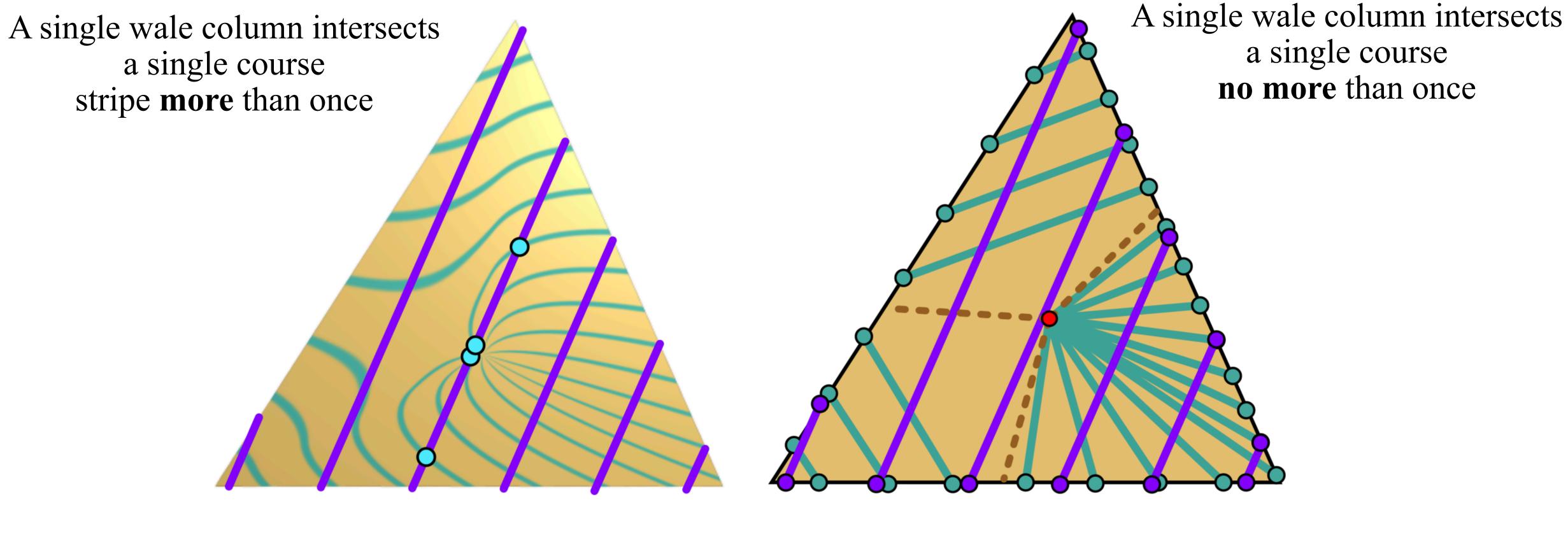


Thank you for your attention! Come chat with us! (Slides that follow are for clarifying questions)

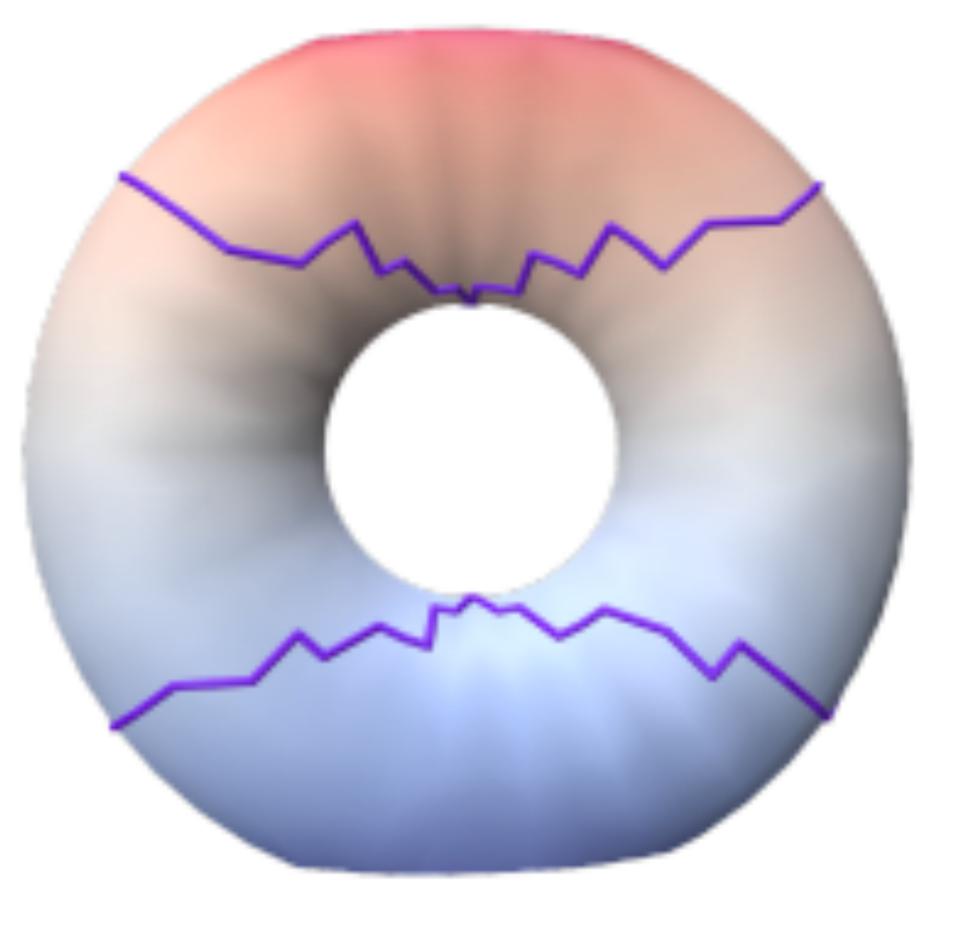
Knit Graph Generation



Effective Interpolant

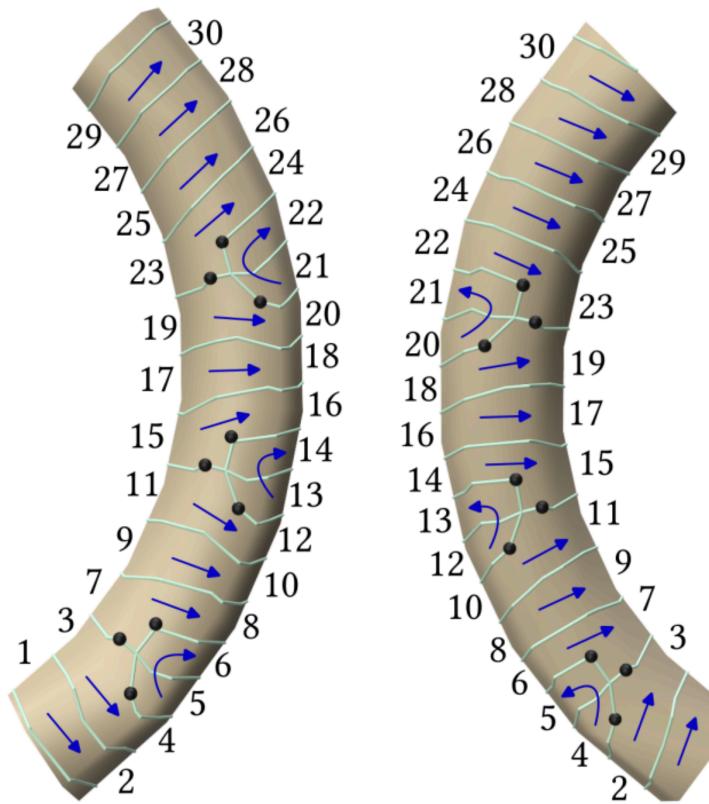


Morse decomposition for models with genus

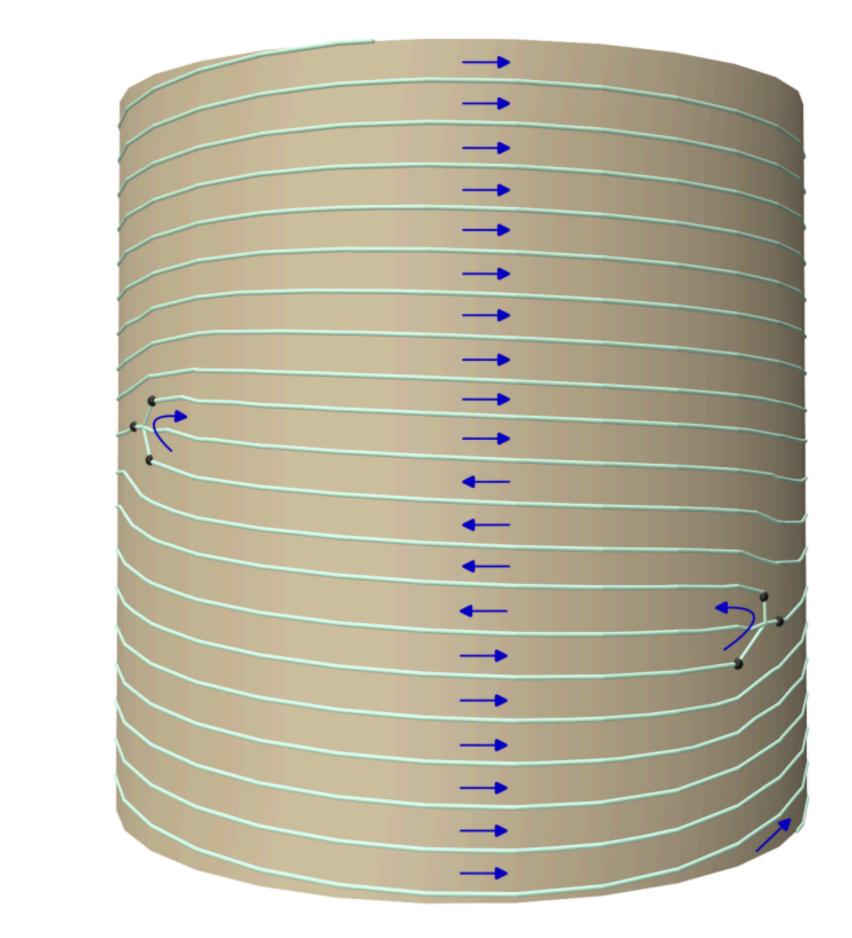


Decompose surface *M* into cylinders by cutting along critical level sets (in a Morse sense) of the time function. Critical level sets of time function are values of time function at saddle vertices of M.

Tracing-free Pipeline



Tracing (yarn path) implied directly by foliation structure



1-form Optimization Problem

min $\sigma_c, \mathbf{k}^{\mathrm{hg}}$ subject to

$$||W(\sigma_{c} - \omega_{c})||^{2}$$

$$\sigma_{c}|_{\partial M} = 0,$$

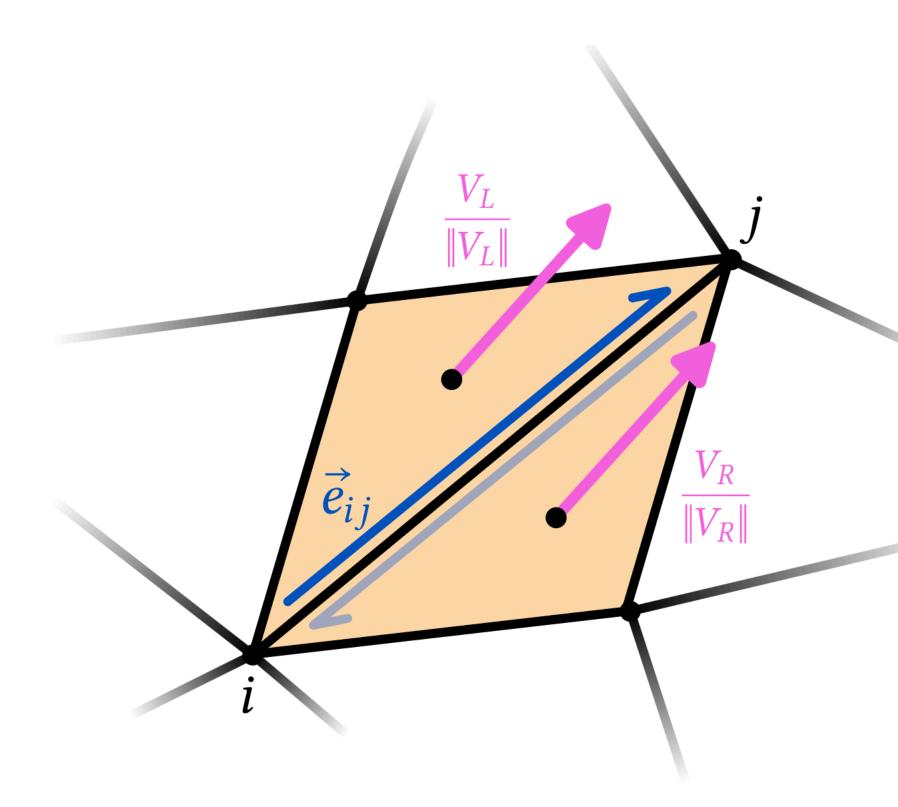
$$d_{1}\sigma_{c} = P\mathbf{k}$$

$$\mathbf{H}\sigma_{c} = P\mathbf{k}^{\mathrm{hg}}$$

$$\int_{\gamma_{j}^{\mathrm{ls}}} \sigma_{c} = 0, \quad 1 \leq j \leq N^{\mathrm{ls}}$$

H - Homology generators for models with genus

Only need level-set constraints. [Mitra et al. 2023] required level-set constraints, helix elimination constraints, stripe alignment constraints, stripe placement constraints!



$$w_{e_{ij}} = \left| C - \vec{e}_{ij} \cdot \frac{V}{\|V\|} \right|$$

where:

$$C = \max_{e_{ij}} \left\{ \vec{e}_{ij} \cdot \frac{V}{\|V\|} \right\}$$