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Figure 1: Via a singular foliations perspective on the course stripe pattern, we are able to automatically match singular triangles
(blue/red) and separatrices (cyan) to ensure that all integral curves (candidate course rows) do not helix. Our improved workflow
for [Mitra et al. 2023] extends it to models with non-zero genus, decomposing the input mesh𝑀 into cylindrical components
along critical level sets of the knitting time function. We then solve an optimal assignment LP to obtain appropriate linear
level set constraints (orange) .

ABSTRACT
We build upon the stripes-based knit planning framework of [Mitra

et al. 2023], and view the resultant stripe pattern through the lens

of singular foliations. This perspective views the stripes, and thus

the candidate course rows or wale columns, as integral curves of

a vector field specified by the spinning form of [Knöppel et al.

2015]. We show how to tightly control the topological structure

of this vector field with linear level set constraints, preventing

helicing of any integral curve. Practically speaking, this obviates

the stripe placement constraints of [Mitra et al. 2023] and allows for

shifting and variation of the stripe frequency without introducing

additional helices. En route, we make the first explicit algebraic

characterization of spinning form level set structure within singular

triangles, and replace the standard interpolant with an “effective”
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one that improves the robustness of knit graph generation. We also

extend the model of [Mitra et al. 2023] to surfaces with genus, via a

Morse-based cylindrical decomposition, and implement automatic

singularity pairing on the resulting components.
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1 INTRODUCTION
There has been much recent interest in designing algorithms for

stitch structure planning in computational knitting. In the setting of
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AutoKnit [Narayanan et al. 2018], these algorithms abstract stitch

patterns with the notion of a knit graph, which must satisfy numer-

ous important properties to achieve machine-knittability. The most

challenging property to maintain is the helix-free condition: that
the course rows should not form spirals. Narayanan et al. [2018]

use iterative, local geodesic distance estimates to produce their knit

graphs, which while helix-free, are not globally smooth and provide

little to no user-control in stitch irregularity placement.

Nader et al. [2021] and Mitra et al. [2023] both leverage the more

global stripe generation framework of [Knöppel et al. 2015] to gen-

erate knit graphs of an input surface𝑀 , although these techniques

may introduce arbitrary helicing. Nader et al. [2021] use the op-

erators presented in [Bommes et al. 2011] to address helicing, but

this method is not guaranteed to remove all helices. Mitra et al.

[2023] optimize for stripes directly in the space of differential 1-

forms and present numerous linear constraints which may be used

individually or together to generate helix-free knit graphs.

In this work, we extend and provide further insights on the 1-

form-based framework of [Mitra et al. 2023]. We view the resulting

spinning form and its stripes as a vector field flow over 𝑀 . The

integral curves make up the leaves in a singular foliation of 𝑀 ,

decomposing it into 1-dimensional curves that serve as candidate

course rows or wale columns. Singularities of the foliation corre-

spond to vector field singularities, and represent stitch irregularities

(short rows, increases/decreases).

The singular foliation splits𝑀 into cells of equivalent flow behav-

ior, along separatrices emanating from foliation singularities. We

prove that matching these separatrices appropriately with linear

level set constraints guarantees that none of the integral curves will
form helices. Practically, this allows one to “shift” the course rows

arbitrarily and change their frequency without introducing addi-

tional helices. Local variation of frequency, and thus knit density,

is also used by practitioners to achieve different aesthetic/physical

properties, e.g., joining of knit textures of different resolution, or

knitting of ribbed cuffs. Our matching level set constraints also

obviate the use of stripe placements in [Mitra et al. 2023], needed to

prevent specific integral curves from helicing.

Precise topological control of foliation structure also presents

an opportunity for “single-thread-level modelling”. The integral

curves of our foliations may be used to explicitly trace the helical

yarn path in a machine knit. This constrasts with the popular knit

graph of AutoKnit [Narayanan et al. 2018], where each graph node

corresponds to two stacked stitches, and uses a tracing procedure to
produce the knitting order on these stitches. As a result, this classic

knit graph cannot represent certain elementary knit structures that

singular foliations should be able to model.

We leverage the above understanding into an improvedworkflow

for [Mitra et al. 2023]. This includes automation of singularity

matching, extension to models with genus, and more robust knit

graph generation. We list our main contributions below.

• A novel topological understanding of stripe patterns as sin-

gular foliations (§3), leading to a theoretical guarantee on

no helicing from any integral curve (§3.2 & Prop. 1).

– Eliminates need for stripe placement constraints of [Mitra

et al. 2023].

– Allows for shifting and frequency adjustment of stripe

pattern without introduction of helicing (see Fig. 9a).

• A first algebraic characterization of the spinning form level

set structure in singular triangles (§3.1.3), and a novel “effec-

tive interpolant” that improves robustness of stripe tracing

for knit graph generation (§4.4.1).

• An improved pipeline for the form-based framework of [Mi-

tra et al. 2023] (§4):

– An automatic process for optimal singularity matching

and construction of level set constraints (§4.3).

– Extension tomodels of genus𝑔 > 0, using aMorse-theoretic

cylindrical decomposition (§4.1).

• First steps toward “single-thread-level modelling” with stripe

patterns following the actual (helical) yarn path of a machine

knit extending the space of representable knit structures

beyond that of the popular knit graph of [Narayanan et al.

2018] (§5.1).

2 RELATEDWORK
Our work has been influenced by several knitting frameworks from

the graphics and computational fabrication communities. A primer

on knitting terminology is presented in Supp. §1. Narayanan et al.

[2018] present an end-to-end pipeline for machine-knitting arbi-

trary input geometries and the works of [Jones et al. 2022; Kaspar

et al. 2019, 2021; Narayanan et al. 2019] demonstrate interfaces for

varying stitch layout, coloring and texturing. Albaugh et al. [2023];

Hofmann et al. [2019, 2023, 2020] construct tools and a domain-

specific language for generatingmachine knitting instructions, with

special care taken for handling knit textures. Other works [Wu et al.

2018; Yuksel et al. 2012] generate stitch-meshes for rendering pur-
poses while the works of [Igarashi et al. 2008; Wu et al. 2019] are

aimed at producing hand-knittable output. Lastly, the works of

[Mitra et al. 2023] and [Nader et al. 2021] leverage stripe pattern

tracing to produce knit graphs that are machine-knittable.

2.1 Stripe Patterns for Fabrication
Methods of stripe generation on surfaces have received much re-

cent attention in the realm of digital fabrication. The ability to

specify evenly-spaced stripes with directional guidance has found

several modeling uses. Nader et al. [2021] were the first to use stripe

patterns for knit graph generation, tracing the stripes of [Knöppel

et al. 2015]. Noma et al. [2022] presented a spinning-form-based

framework for editing and connecting stripe singularities in such

patterns, applying their tools to 3D wireframe structures and “zip-

pables” [Schüller et al. 2018]. Mitra et al. [2023] extend and apply

a similar form-based framework, developing novel constraints for

eliminating the helicing inherent in stripe patterns generated with

[Knöppel et al. 2015]. The work of [Tricard et al. 2020] generates

2D stripe patterns with phasor noise methods and extrude them

to obtain microstructures with tailored deformation properties.

Montes Maestre et al. [2023] develop a differentiable version of the

[Knöppel et al. 2015] pipeline and use it for inverse design of stripe-

shaped bi-material distributions. Lastly, [Jourdan et al. 2023] utilize

[Knöppel et al. 2015] stripe patterns to generate layer toolpaths for

3D printing of self-shaping shells. Like many works above, we use

the spinning form interpolant of [Knöppel et al. 2015], but we are
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the first to explicitly characterize the level set structure in singular

triangles (§3.1.3).

With regard to [Mitra et al. 2023]: we improve their pipeline by

preventing helicing of any level set in the stripe pattern, as opposed

to only specific level sets. This allows for shifting and frequency

change of the stripe pattern without introducing additional he-

lices, removing their need for stripe placement constraints. We also

implement an automatic optimal-assignment-based strategy for

matching singular triangles (§4.3), and appropriately extend their

framework to models with genus (§4.1). Lastly, we achieve more

robust stripe tracing for knit graph generation via our “effective

interpolant” (§4.4.1).

2.2 Foliations in Geometry Processing
There have been several works in graphics and geometry processing

that have used and referenced foliations in various applied contexts.

Vekhter et al. [2019] produce approximately geodesic foliations

for fabricating triaxial weaves of input mesh surfaces. In our setting,

we do not require our foliations to be approximately geodesic,

but we do require more precise global topological control on the

foliation structure due to the manufacturing constraints of knitting.

Campen et al. [2016b] produce bijective maps between simply-

connected 2D and 3D domains via globally trivial simplicial foli-

ations, specified via face- or tet-wise constant vector fields. Our

setting requires foliations with singularities to produce geometric

shaping and is formulated on surface domains with more complex

topology (at least two boundaries, and potentially some genus).

Foliations are implicit in many works on vector field design or

tracing, as any vector field (in the smooth setting) gives rise to a

foliation via its integral curves. We highlight specific works that are

particularly relevant, and refer the reader to [Vaxman et al. 2017]

for a broader survey. Explicit care is taken in [Zhang et al. 2006],

where they describe the dynamics of the vector field flow, but do not

attempt to specify global control over the orbit complex (see §3.2),

instead focusing on the ability to combine and move singularities.

Two relevant field tracing works are [Bhatia et al. 2011; Ray and

Sokolov 2014] which aim to provide vector field representations

and robust tracing algorithms that guarantee a well-defined global

vector field flow. Our analysis in §3.1.3 provides just such a tracing

for the spinning form considered as a vector field representation.

A related line of works are quad- and hex-meshing works, with

these meshes arising from integral curves of orthogonal vector

fields (perhaps on a branched cover). Again, we cite particularly

relevant works and refer the reader to surveys [Bommes et al. 2013;

Pietroni et al. 2022] for more information. One work that explicitly

uses the language of foliations is [Liu and Bommes 2023]. They

consider the matter of locally hexable volumetric frame fields, and

use the singularity theory of foliations to characterize hexability.

Within the quad meshing setting, there are also several works

that aim to control the analogous helicing behavior [Bommes et al.

2011; Campen et al. 2016a]. The latter is especially relevant, with

the use of “cycle” constraints (akin to our level set constraints)

on the parameterization (§4.3) used. The knit graph generated by

our method may also be viewed as the edges of a quad-dominant

mesh, with singular triangles arising as position field singularities,
as described in [Jakob et al. 2015]. Unlike this more general setting,

Figure 2: Stripe patterns as oriented foliations. Oriented foli-
ations are a collection of integral curves of a vector field. A
contiguous set of integral curves form the stripes in a stripe
pattern specified via spinning form. We visualize these inte-
gral curves on the right by increasing the stripe frequency
and highlighting specific curves. The surface is partitioned
into 0- and 1-dimensional integral curves: leaves and singu-
larities (flow fixed points), respectively. The red point de-
notes a source, the yellow point denotes a saddle. The curves
are colored black, orange, and blue to denote curves born at
the source, separatrices, and curves born elsewhere respec-
tively.

our manufacturing constraints do not allow orientation singularities
and require more precise topological control than their framework

affords. Finally, we note a recent work [Mitropoulou et al. 2024]

that considers a subset of quad meshes, strip-decomposable, that
are aimed at adjacent fabrication tasks. While they provide manual

topological editing tools for controlling separatrix behavior, our

singularity matching is automatic. Furthermore, their setting is also

different, with pure quad meshes and only orientation singularities.

3 FOLIATIONS LENS
In this section, we set down a basis for structural understanding of

stripe patterns as oriented foliations1, or equivalently as the collec-

tion of integral curves of a vector field. Informally, a foliation of a

surface 𝑀 is a partition of the surface into 1-dimensional curves,

called leaves, and 0-dimensional points, called singularities. Away
from singularities, the partition looks locally like the partition of

the 𝑥𝑦-plane into constant 𝑥 or 𝑦 lines. As can be seen in Fig. 2,

the stripes in a pattern are sets of “contiguous” leaves, starting

and ending at singularities. We will see that control over the foli-

ation topology translates into the strict helix-free manufacturing

constraints required of machine knitting.

Throughout the exposition below, we will refer to [Aranson et al.

1996] as a detailed source on surface foliations. The manuscript

discusses many foliations more exotic than those arising from stripe

patterns, so we summarize and extract the sections relevant to our

setting. Implicit above is a key fact from the study of foliations:

Whitney’s Theorem (Theorem 2.3 in [Aranson et al. 1996]), which

states that every orientable foliation is induced by the flow of a

vector field. That is to say, the leaves and singularities are formed

1
Unoriented foliations contain singularities of half-integer index, like those specified

via line field (rather than vector field) in [Knöppel et al. 2015]. These singularities are

undesirable as they result in stitch structures that are not machine-knittable.
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by the integral curves of a vector field 𝑉 . A curve 𝛾 : 𝐼 → 𝑆 is

integral if 𝛾 ′ (𝑡) = 𝑉 (𝛾 (𝑡)) for all times 𝑡 .

3.1 Spinning-form-based stripes
We use the setting of form-based stripe patterns, first introduced

in [Knöppel et al. 2015], and built upon for knitting applications

in [Mitra et al. 2023]. We provide a review of the framework, and

present a novel analysis of the stripe patterns on singular triangles

from a foliations perspective. For background on discrete differen-

tial forms and exterior derivatives we refer readers to the works

above and [Crane et al. 2013] for an in-depth introduction.

The method of [Knöppel et al. 2015] is based on a smooth setting

where a complex function𝜓 : 𝑀 → C over a surface𝑀 is consid-

ered, with arg𝜓 used as a stripe texturing coordinate. The input

to their method is a vector field 𝑍 that is used to roughly specify

∇(arg𝜓 ), designating the direction and frequency of pattern vari-

ation. Intuitively, stripes are “born" or “die" at zeros of 𝜓 , where

arg𝜓 has no continuous local definition.

In their discretization, 𝑍 and the resulting optimized𝜓 are spec-

ified per-vertex, and a discrete spinning form is used to interpolate

arg𝜓 into the interior of mesh triangles. The spinning form is a

discrete 1-form, specified by a scalar per mesh edge: 𝜎 : 𝐸 → R,
where 𝜎𝑒 = 𝜎𝑖 𝑗 represents the change in arg𝜓 over edge 𝑒𝑖 𝑗 . 𝜎𝑒 is

optimized to best match the desired frequency specified by 𝑍 , over

the mesh as a whole. The result is a 1-form for which (𝑑1𝜎)𝑚 =

2𝜋𝐾𝑚, 𝐾 ∈ Z |F | on each face𝑚 of the mesh. In general, 2𝜋 may be

replaced by a user-specified period 𝑃 , resulting in stripes of width

𝑃/2.
Onmost triangles within themesh, one should have𝐾𝑚 = 0. This

denotes zero curl of ∇(arg𝜓 ) over face𝑚, leading to a well-defined

arg𝜓 , and a simple linear stripe pattern (Fig. 3, left). On other

triangles, 𝐾𝑚 ≠ 0, indicating non-zero curl, and these correspond

to zeros of 𝜓 . These are termed singular triangles and 𝐾𝑚 is the

singular index of face𝑚. On such triangles, 𝐾𝑚 stripes are created

(Fig. 3, right), and the stripe pattern is governed by a discontinuous

texture function interpolant 𝜑 , presented in Supp. §2 and analyzed

in §3.1.3.

The work of [Mitra et al. 2023] optimized for such a spinning

form directly, in a framework that allowed for the use of linear level
set and stripe placement constraints to prevent helicing of certain
level sets. In particular, stripe placement constraints ensured that

stripes were centered on non-helicing level sets (see Fig. 6 of [Mitra

et al. 2023]). In their framework, a harmonic knitting time function

ℎ (e.g., Fig. 1, top left) and its gradient ∇ℎ roughly specify the

course row alignment and direction of knitting via an optimization

objective (Eq. (2a) and §3.1 of [Mitra et al. 2023]). Several linear

structural constraints were applied to achieve singularity placement

and stripe alignment amongst other aims (§3.2 of [Mitra et al. 2023]).

Most relevant here are the level set constraints, which set the path

integral

∫
𝛾
𝜎 = 0, where𝛾 is a path ofmesh halfedges (e.g., visualized

in Fig. 1 in orange). These ensure that no level set (or stripe) crosses

𝛾 without crossing back, and are used to match separatrices starting

or ending at singular triangles.

3.1.1 Forms as discretized vector fields. One-forms are common

“edge” discretizations of continuous vector fields𝑊 on triangle

meshes 𝑀 [de Goes et al. 2016]. Typically, one takes the field𝑊

Figure 3: Non-singular triangle left, singular triangle right,
with integral curves (cyan) of 𝑉 = 𝑊 ⊥ (pink) and𝑊 = ∇𝜑
(blue) illustrated. The convention to rotate𝑊 clockwise is
adopted so that a positive/negative singular index implies
that the barycenter is a source/sink fixed point.

(a) source (b) sink (c) saddle

(d) sector examples
(e) effective in-
terpolant

Figure 4: Flow structure near singularities: (a) a source, (b) a
sink, (c) a saddle, (d) sector examples (inspired by Fig. 1.44
from [Aranson et al. 1996]), (e) a schematic representation of
our “effective interpolant” with two hyperbolic sectors and
one parabolic sector (see §4.4.1).

and sets the 1-form value on edges to be equal to the path integral

𝜎𝑒 =
∫
𝑒
𝑊 . This perspective results in simple discretized differential

operators like the discrete curl given by the exterior derivative

𝑑1. To go in the other direction, from a discretized 1-form to a

vector field𝑊 on the entire mesh 𝑀 , one makes a choice of field

interpolant, like the common Whitney basis [Whitney 1957].

In our setting, we may consider the texture interpolant 𝜑 , (Eq.

3, supp.) as a particular choice of field interpolant, via its gradient

𝑊 = ∇𝜑 . The level sets of 𝜑 are then perpendicular to𝑊 and are

traced out by the integral curves of 𝑉 =𝑊 ⊥
. This is illustrated in

Fig. 3. Ultimately, we characterize the flow and integral curves of

𝑉 via an algebraic analysis of the level sets of 𝜑 .

3.1.2 Basic terminology for 2-dimensional flows near singularities.
We recall some basic definitions for 2-dimensional flows near sin-
gularities. Further information may be found in [Aranson et al.

1996], or in [Günther and Baeza Rojo 2020]. Singularities are fixed

points of the flow: points 𝑝 for which 𝑉 (𝑝) = 0. The integral curve

containing 𝑝 is simply stationary: 𝛾 (𝑡) = 𝑝 for all times 𝑡 .
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In our setting
2
, at a given singularity 𝑝 , the flow is split locally

into sectors bounded by separatrices. Separatrices are integral curves
that approach or leave 𝑝 as 𝑡 → ∞ or 𝑡 → −∞, and that have nearby

integral curves not converging to 𝑝 (see §2.3.3 of [Aranson et al.

1996] for an epsilon-delta definition). These sectors may be of three

types: hyperbolic, elliptic, or parabolic, and are illustrated in Fig. 4d.

Arising from 𝜑 , there are three kinds of singularities we encounter:

sinks, sources, and saddles; all illustrated in Fig. 3.1.1.

3.1.3 Flow structure in singular triangles. We now present an alge-

braic characterization of the integral curves of𝑉 , via an analysis of

the level sets of 𝜑 , the texture interpolant of [Knöppel et al. 2015].

In non-singular triangles the level sets are linear and easily inferred,

but on singular triangles the level sets are quadratic in barycentric

coordinates, and more challenging to detail.

For the sake of brevity, we present just the case of 𝑛𝑃 > 0, illus-

trated in Fig. 5. When 𝑛𝑃 < 0, the characterization merely differs

by a few sign changes. The expression for 𝜑 and full arguments

for this characterization are deferred to Supp. §2, as we are mostly

interested in the topological structure of the flow.

Subcases are formed by considering the set of signs of𝜎𝑖 𝑗 , 𝜎 𝑗𝑘 , 𝜎𝑘𝑖 .

As their sum is positive, at least one must be positive, and we denote

the cases + + +, + + −, + − −. Note that ordering does not matter,

merely how many positive and negative values there are.

• + + +: A single source singularity is present at the barycenter,

with all integral curves exiting at the boundary (Fig. 5, left).

• + + −: There is a source at the barycenter, and a saddle in

the barycentric region bounded by the negative sign edge

(Fig. 5, middle). A separatrix from the saddle exits the source,

and the rest of the integral curves exiting the source start on

the edges with positive 𝜎 .

• + − −: There is a source at the barycenter, and a saddle in

the barycentric region bounded by the more negative edge

(Fig. 5, right). A separatrix from the saddle exits the source,

and the rest of the integral curves exiting the source start on

the single positive edge.

Our optimization overwhelmingly produces the + + − case, as the

spinning form optimization of [Mitra et al. 2023] motivates the 𝜎𝑖 𝑗
to agree with ∇ℎ · 𝑒𝑖 𝑗 .

Figure 5: Behavior of integral curves in singular triangles
when 𝑛𝑃 > 0. Signs of 𝜎𝑖 𝑗 , 𝜎 𝑗𝑘 , 𝜎𝑘𝑖 are indicated with ±’s. Pur-
ple indicates the birth interval where integral curves exiting
the source leave the triangle. Color-coded are separatrices
(orange), sources (red), and saddles (yellow).

For precise control of global foliation structure, we obtain ex-

act expressions for the separatrix level sets in both the + + − and

2
Arising from spinning forms,𝑉 has isolated singularities (as there are only a finite

number). Furthermore, these singularities are not surrounded by closed cycles.

+ − − cases. Two of these level sets bound the birth/death inter-
val of integral curves that tend to the barycenter as 𝑡 → −∞/+∞
when 𝑛𝑃 > 0 / 𝑛𝑃 < 0, respectively. In Supp. §2 we derive these

expressions and describe how to obtain their intersection with the

triangle boundary.

3.2 Global structure of flows and foliations
The flows induced by spinning forms are of a well-behaved class:

flows without nontrivial recurrent trajectories (see §2.2.1 of [Aranson
et al. 1996]). In particular, the only trajectories that are part of

their limit sets are singularities (fixed points) and closed cycles

({𝛾 (𝑡)}𝑡 ∈R forms a closed loop). A point 𝑝 is in the limit set of a
trajectory 𝛾 if there is a sequence {𝑡𝑖 }∞𝑖=1 with 𝑡𝑖 → ∞ such that

𝛾 (𝑡𝑖 ) → 𝑝 .

For this set of flows, the global topological struc-

ture is captured by an object called the orbit com-
plex. Roughly speaking (see §6.5 of [Aranson et al.

1996] for detail), this describes a decomposition of

𝑀 into cells that are open disks or annuli topolog-

ically. These cells are the complement of the singu-

larities and the separatrices. Within these cells, the

flow is like that of a parallel flow on an open strip

or a parallel flow on an open annulus (illustrated in the inset).

In Fig. 6, one can see a simple example of this cell structure on a

cylinder. When no level set constraint is used (left), there are two

disc-shaped cells with different flow behaviors with respect to the

candidate wale columns (purple): cell A helices, while cell B does

not. If we join separatrices with a level set constraint (right, orange),

birth/death intervals line up and only one non-helicing disc-shaped

cell results. The practical implication of this behavior is that if one

were to sample the integral curves at a higher rate (by increasing

stripe frequency) or shift the integral curves traced, then no new

helices may be introduced. An example of frequency doubling with

no new helices is demonstrated with the sock model in §5.

Figure 6: Left: With no separatrix (cyan) matching, two cells
with different behavior arise: those in cell A helix, while
those in cell B do not. Right: By matching with a level set
constraint (orange), we ensure a single disc-shaped cell, with
all integral curves not helicing with respect to the central
candidate wale column (purple).

In Supp. §3, we prove the following proposition, which shows

that control of the boundary separatrices via level set constraints

can be used to guarantee that none of the curves in a cell helix

with respect to a transverse wale foliation. In short, if the level set
constraint does not helix, then the integral curves in the neighboring
cell won’t either.
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Proposition 1. Consider two transverse course and wale foliations
specified by 𝜎𝑐 , 𝜎𝑤 , and our effective interpolant. In any disc-shaped
cell 𝑅 in the orbit complex of 𝜎𝑐 , if either boundary of 𝑅 is helix-free
with respect to 𝜎𝑤 , then all integral curves of 𝑅 are helix-free.

4 METHOD
In this section, we outline our procedure for generating a stripe pat-

tern that avoids helicing over all leaves. First, we semi-automatically

generate singular triangle positions and spinning form values on

said triangles, informed by the geometry of the model. Next, we

automatically match singular triangles with level set constraints

that align their birth/death intervals and ensure no helicing. Lastly,

we use our effective interpolant to more robustly trace and produce

a knit graph suitable for machine knitting.

4.1 Models with non-zero genus
We first describe the additional structures

needed to handle more complex topologies for

𝑀 (those with > 2 boundaries and/or nonzero

genus). The first is a decomposition of 𝑀 into

cylinders along edge cycles that roughly follow

critical level sets (in theMorse sense) of the guid-

ing time function ℎ, as illustrated in the inset. These critical level

sets are the values ofℎ at saddle vertices of𝑀 . In §4.2, we check that

each cylindrical component has singular indices that sum to 0, and

in §4.3, we only match singular triangles within these cylindrical

components. Details on our method for obtaining the necessary

edge cycles are in Supp. §4.

Secondly, in genus 𝑔 > 0 cases, a spinning form 𝜎 must satisfy in-

teger integrability constraints along homology generators to result

in a well-defined function𝑀 → S1. If these do not hold, the relative
value between two vertices would be path-dependent. To impose

these constraints, the well-known tree-cotree algorithm [Dłotko

2012] is applied to find a set of 2𝑔 + 𝑛 − 1 edge cycle generators.

These are gathered into a matrix H ∈ {+1,−1} (2𝑔+𝑛−1)× |𝐸 | that
performs path integration along the generators, and khg gathers
the corresponding integer variables in Eq. (2d).

4.2 Singular triangle generation
To generate singular triangle positions, indices, and spinning form

values on these triangles, we use [Knöppel et al. 2015] to make

an initial guess. The method generates geometrically-informed

singular triangle positions and indices, and the resulting form values

on these triangles is roughly aligned with the gradient.

Oftentimes, this method alone is suitable for determining reason-

able singular triangle positions. They may then be paired with the

procedure of §4.3 to fix helicing. However, there are two instances

that may trigger manual fixing. First, the singular indices on each

cylindrical component may not sum to 0. This constraint ensures

that short rows do not wander from component to component and

encourages satisfaction of “simple splits and merges” (Property 5

of [Narayanan et al. 2018]). The second related instance is when

pairs of matched singular triangles differ greatly in terms of their

harmonic time function ℎ values. This leads to stripes that are quite

“slanted” with respect to the level sets of ℎ as can be seen in the left

of Fig. 7. The optimization of [Knöppel et al. 2015] does not avoid

Figure 7: Left: Paired singularities highly offset with respect
to ℎ leads to a highly slanted stripe pattern with much width
variation. Middle: The level set constraint (orange) opposes
𝑉 when going from index +1 (red) to index -1 (blue). This
leads to helicing of the integral curves in the resulting cell.
Right: Two level set constraints (purple and green) intersect,
leading to helicing integral curves in the bottom cell.

this, due to the lack of constraints preventing helicing. The manual

fix in both instances is placement of additional singular triangles

on approximately the same isoline of ℎ. We leave to future work the

development of a fully automatic method that solves this problem.

4.3 Birth/death interval matching
In our next step, we automatically match singular triangles, and

align their birth/death intervals with suitable level set constraints.

For simplicity, we assume that singular indices are all ±1, and
thus by the global index theorem (Thm. 3.1 of [Noma et al. 2022]),

there should be an equal number 𝑠 of +1 and −1 singularities to

match. This aligns with the output of [Knöppel et al. 2015] in nearly

all cases, as spacing dislocations in the stripe pattern lowers the

objective energy.

For the singularity matching and level set constraints, three

desiderata inform our automatic pairing strategy (motivating ex-

amples illustrated in Fig. 7):

(1) The value of the time function ℎ on paired singularities

should not differ too much, and level set constraints should

roughly follow the isolines of ℎ.

(2) Level set constraints should roughly follow the direction of

𝑉 when going from index +1 to index −1 singular triangles.
(3) Level set constraints should not cross each other, as this

causes separatrices to wander wildly to avoid crossing.

Thus, we solve for the matching as an optimal assignment prob-

lem, calculating a cost matrix C ∈ (R+)𝑠×𝑠 for matching each +1
singularity with each −1 singularity. The cost is obtained via a Djik-
stra’s shortest path search on a custom-weighted graph of mesh

halfedges. The weight for a halfedge 𝑒𝑖 𝑗 is given by the absolute

difference between ®𝑒𝑖 𝑗 · (𝑉 /∥𝑉 ∥) and the maximal such dot product

over all mesh halfedges. The dot product measures how well each

halfedge aligns with𝑉 , and encourages our shortest path algorithm

to find paths satisfying (1) and (2) above. For +1 singularity 𝑖 and
−1 singularity 𝑗 , the length of the shortest path is stored in entry

C𝑖 𝑗 .
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The optimal assignment will be stored in a permutation matrix

T ∈ {0, 1}𝑠×𝑠 , where T𝑖 𝑗 = 1 denotes a matching of +1 singularity 𝑖
with −1 singularity 𝑗 . We solve the following LP relaxation which

has a binary minimizer:

min

T∈[0,1]𝑠×𝑠
⟨C,T⟩ (1a)

such that T1 = 1 (1b)

1
𝑇T = 1𝑇 (1c)

Eq. (1a) denotes a sum of the entrywise products, and Eqs. (1b), (1c)

ensure that any binary minimizer T is a permutation matrix.

Finally, with the matching in hand, we need to find the exact

path of the level set constraints aligning birth/death intervals. We

may not use the paths used to calculate C as these may violate (3)

above. We recall here as well that the choice of path is only relevant

up to homological class in the mesh𝑀 minus the singular triangles

(see Lemma 1 of [Mitra et al. 2023]), so deviating from the “best

paths” used to calculate C is not damaging.

To find these, we simply take each matched pair in turn and

calculate the best path available currently. After each exact path

is calculated, the halfedges on the path have their weight set to

+∞ to prevent subsequent paths from crossing. Lastly, we utilize

the separatrix intersections described in Supp. §2.3 to complete the

level set constraint. Our matching automates the manual matching

of [Mitra et al. 2023], and produces good pairings reliably.

4.4 Form optimization and knit graph
generation

With constraints gathered, we solve the following optimization

problem for the course 1-form 𝜎𝑐 . We provide a brief review of

our notation here, borrowed from [Mitra et al. 2023], and refer

the reader there for a more in-depth description, if desired. The

gradient of the time function, ∇ℎ should be approximately orthog-

onal to the course rows and parallel to the wale columns. Thus, we

define our comparison 1-form 𝜔𝑐 as the average of the normalized

adjacent face gradients for each edge [Mitra et al. 2023]. 𝑑1, 𝑃 ,𝑊 ,

and H are the discrete exterior derivative operator, stripe period,

diagonal cotangent weight matrix, and set of homology generators,

respectively. 𝛾𝑙𝑠
𝑗
is used to denote a particular level set constraint,

where the total number of such constraints are given by𝑁 𝑙𝑠
. Finally,

k, kℎ𝑔 are integer variables that represent singularity index at a face
and the number of striping level sets modulo 𝑃 that pass through a

homology generator, respectively.

min

𝜎𝑐 ,khg
| |𝑊 (𝜎𝑐 − 𝜔𝑐 ) | |2 (2a)

subject to 𝜎𝑐
��
𝜕𝑀

= 0, (2b)

𝑑1𝜎𝑐 = 𝑃k (2c)

H𝜎𝑐 = 𝑃khg (2d)∫
𝛾 ls

𝑗

𝜎𝑐 = 0, 1 ≤ 𝑗 ≤ 𝑁 ls
(2e)

This problem only has 2𝑔+𝑛−1 integer variables, and is significantly
quicker to run than the mixed-integer problems considered in S2

of [Mitra et al. 2023] (𝑂 ( |𝐹 |) integer variables).

Figure 8: Left: The spinning form interpolant 𝜑 produces
course curves (cyan) that intersect with a single wale col-
umn (purple) multiple times if they pass close enough to the
barycenter. Right: Our effective interpolant ensures that this
problem does not occur, only modifying the course foliation
locally.

For the wale 𝜎𝑤 , we can usually simply call [Knöppel et al. 2015].

In the rare instances when we have collisions of wale and course

singular triangles, we are forced to run a larger mixed-integer

problem, with integer variables k ∈ Z |𝐹 | . This problem drops the

level set constraints, Eq. (2e), as in [Mitra et al. 2023] (see last

paragraph of §4.1 in that work). Finally, we note that it is possible

to include the stripe alignment constraints of [Mitra et al. 2023],

but care would need to be taken to avoid infeasibility, so we do not

include them here.

4.4.1 Effective interpolant. Our final step is to generate the knit

graph by tracing the integral curves of 𝑉 . However, as our analysis

in the singular triangles shows, this is likely to cause failure in

certain cases (Fig. 8). Thus, we develop an effective interpolant, that
achieves the spinning form values on the edges of a singular triangle

(also shown in Fig. 8) and does not suffer these robustness issues.

Schematically, we replace the interior integral curve structure

with a single source/sink singularity at the barycenter with two

hyperbolic sectors and a parabolic sector. Our procedure for tracing

this effective interpolant is described in Supp. §5.

5 RESULTS
We apply our improved workflow and automatic separatrix match-

ing to numerous models illustrated throughout the text and in Fig.

9. We highlight the “torus” and “holey pants” as models with genus,

and the two versions of the “sock” as showing frequency doubling

without introduction of additional helices. With regard to manual

intervention for singularity placement: a pair of singularities is

induced for explanatory purposes in the cylinder model (Fig. 9d);

the automatic singularity positions from [Knöppel et al. 2015] are

used directly on the sock model (Fig. 9a); for the remaining models,

initial singularity positions from [Knöppel et al. 2015] are modified

minimally to ensure appropriate time function alignment. Edge

length error histograms for our knit graphs are in Fig. 10.

After knit graph generation, we use Autoknit [Narayanan et al.

2018] for machine scheduling. All samples were knitted on a Shima

Seiki SWG91N2 15-gauge v-bed knitting machine using 2/28NM

rayon yarn at a 35-stitch size at a rate of 0.8 m/s.

To solve the optimization problems of §4.4, we use the vanilla

Gurobi solver [Gurobi Optimization, LLC 2022] on a 2.3GHz Intel
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Core i5 Macbook Pro with 8GB of RAM. As with S1 of [Mitra et al.

2023], with few integer variables, our runtimes are interactive and

under a second. The applications of [Knöppel et al. 2015] are even

faster, and follow the behavior noted in their paper.

5.1 Single-thread-level modelling
In Fig. 11, we show that our representation provides the oppor-

tunity for “single-thread-level modelling” of knit patterns and is

capable of representing knit patterns that are not accessible to the

widely-used knit graph representation of AutoKnit [Narayanan

et al. 2018]. On the left, a tracing of the bent cylinder model is

implied by the foliation structure. On the right, a similar tracing

is implied, and the short row wraps around the cylinder model

multiple times, something not possible with the knit graph repre-

sentation of [Narayanan et al. 2018]. These are generated with our

novel topological understanding and separatrix matching level set

constraints, which allow us to precisely specify the “amount” of

helicing. We are excited at the prospect of a “tracing-free” pipeline

for generating machine instructions, but leave this to future work.

6 CONCLUSION
In this work, we outline and demonstrate the benefits of a greater

topological understanding of stripe patterns. We view them as

singular foliations, and match separatrices appropriately to effect

precise control on integral curves, and thus candidate course rows

and wale columns. This prevents helicing in a more robust fash-

ion, and presents an opportunity for development of a form-based

tracing-free pipeline for generation of machine knitting instruc-

tions. We also improve greatly on the workflow of [Mitra et al.

2023] as outlined in §1, and demonstrate it on a selection of models

in §5.

6.1 Limitations and Future Work
Our workflow still sometimes requires manual intervention in the

generation of singular triangle positions. Going forward, we hope

to develop a method that will automatically generate pairs of sin-

gularities along isolines of ℎ. Alternately, the development of a

tracing-free pipeline would allow for matched pairs to differ greatly

in ℎ values (Fig. 11, right). The development of such a pipeline for

generating machine knit instructions is interesting for indepen-

dent reasons. Foremost among these is that it allows for a vastly

expanded range of representable knit structures.
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Figure 9: Results. (a) Singularities generated by [Knöppel et al. 2015] are matched and the corresponding level set constraints
are shown in orange. We double the frequency of the stripe pattern and still achieve a valid knit graph of higher resolution
without additional helicing. (b) Edited singularities from [Knöppel et al. 2015] are matched to generate a knit graph. (c) Our
method is able to handle models with non-zero genus via a cylindrical decomposition shown in pink. Using our optimal
matching scheme, singularities are matched in each cylindrical component. (d) A pair of singularities are matched using a level
set constraint. This induces a forced short row in the knit graph. (e) Edited singularities from [Knöppel et al. 2015] are matched
in each cylindrical component of the torus model (decomposition shown in teaser).
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Figure 10: Edge length error histograms for the fabricated models. While quantifying geometric fidelity is challenging due to
the ability of knits to stretch and be malleable, we note that our histograms are similar to those of [Mitra et al. 2023]. Befitting
the use of our 𝐿2 objective, our histograms aren’t as strongly concentrated near 0 as those of [Narayanan et al. 2018] but do
present significantly fewer outliers. As is the case with [Narayanan et al. 2018], most of our edge length errors are < 10%.

Figure 11: Implied yarn paths following the blue arrows. Left: the implied path winds up the bent cylinder (both sides of the
model shown), visiting each number in turn, and tracing out the short rows. This example is generated by doubling the singular
triangle indices, and allowing the boundary integral constraints to equal +𝑃 and −𝑃 on the top and bottom, respectively. Right:
the implied path winds up the cylinder, and reverses direction between the short row ends, helicing fully around the cylinder
in the opposite direction several times. This was generated with the same ±𝑃 boundary integral constraints and a single level
set constraint

∫
𝛾
𝜎𝑐 = ˜𝑘𝑃 joining separatrices, where − ˜𝑘 denotes the number of opposite direction helices desired.
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