
Supplementary Material for Helix-Free Stripes for Knit Graph Design

1 KNITTING PRIMER

1.1 Knit Pattern
In (weft) knitting, a fabric is formed from rows of yarn loops that are interwoven to form
grids of stitches. The simplest (single jersey) pattern is visualized in the figure to the
right, from [5]. Rows of these basic stitches form courses, while columns form wales.
A regular grid of such stitches has an inherently flat geometry, so to introduce cur-

vature, one must insert stitch irregularities in the form of short rows and increases and
decreases. These are illustrated at the stitch level in Fig. 1. Short rows introduce additional
course rows, while increases/decreases change the number of wale columns in the stitch
pattern. By placing such stitch irregularities in an informed fashion, one can reproduce a
target geometry.

1.2 Knit Graphs
In this work, we follow the paradigm established in AutoKnit [4] and aim to construct
a knit graph to represent the stitch pattern. Each node in a knit graph represents a pair
of stacked stitches, neighboring each other in the wale direction, as illustrated in the
inset figure from [4]. Pairs of stitches are used instead of single stitches to accommodate
the tracing of short rows, which actually consist of two rows of stitches.
For areas without stitch irregularities, each node is part of four directed edges. Two

are course edges, one incoming and one outgoing, and describe the overall direction in which yarn is laid down by
the knitting machine. The other two are wale edges, one incoming and one outgoing, and describe the direction
in which course rows are being produced.
To represent stitch irregularities, one varies the number of incoming and outgoing course and wale edges.

Short row ends are represented by nodes lacking either an incoming or outgoing course edge. Increases/decreases
are represented by nodes having two outgoing/incoming wale edges, respectively. See Fig. 1, right.

Fig. 1. A short row end, an increase, and a decrease, and the corresponding knit graph. Modified from [2].
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2 DISCRETE DIFFERENTIAL FORMS PRIMER
We present basic definitions from the theory of discrete exterior calculus, and give some intuitions on the objects
and operators. Our discussion is brief, but more complete expositions may be found, e.g., [1].

On a triangle mesh𝑀 , discrete differential 0-forms, 1-forms, and 2-forms are assignments of real numbers to
vertices 𝑉 , oriented edges 𝐸, and oriented faces 𝐹 , respectively. The orientations of edges, are chosen arbitrarily,
and the orientations of faces are specified by the outward normal. Thus, a 0-form 𝑓 : 𝑉 → R is a discretized
function over the mesh. Linear interpolation of the vertex values over triangles approximates the original function.

A 1-form 𝜎 : 𝐸 → R gives a real number for each oriented edge, and may be thought of as a discretized vector
field over the surface. The value assigned to each oriented edge is the path integral of the vector field along that
edge. Following convention, we denote its value on an edge 𝑖 𝑗 with 𝜎𝑖 𝑗 , noting that 𝜎 𝑗𝑖 = −𝜎𝑖 𝑗 , to account for
orientation. Lastly, a 2-form 𝜔 : 𝐹 → R assigns a number to each oriented triangular face, and may be thought of
as an area measure over the mesh.
Acting on these 𝑘-forms are discrete exterior differential operators, 𝑑0 and 𝑑1, discrete gradient

and curl operators, respectively. In particular, 𝑑0 acts on a 0-form 𝑓 to return a 1-form 𝑑0 𝑓 whose
value on an oriented edge 𝑖 𝑗 is given by (𝑑0 𝑓 )𝑖 𝑗 = 𝑓 (𝑣 𝑗 ) − 𝑓 (𝑣𝑖 ). And 𝑑1 acts on a 1-form 𝜎 to return
a 2-form 𝑑1𝜎 whose value on a face𝑚 is given by the oriented sum of 𝜎 around the boundary. The
inset figure illustrates this, showing that (𝑑1𝜎)𝑚 = 𝜎𝑖 𝑗 + 𝜎 𝑗𝑘 + 𝜎𝑘𝑖 (normal pointing out of the page).

3 STRIPE PATTERN TRACING
We first integrate both 𝜎𝑐 and 𝜎𝑤 along a spanning tree of the mesh edges, and store the values (mod 𝑃 ) as 𝛼mod
and 𝛽mod, respectively, at each vertex.

3.1 On the interior of a single triangle:
𝜎𝑐 is integrated locally over every triangle, 𝑖 𝑗𝑘 ∈ 𝐹 , with 𝛼𝑖 = (𝛼mod)𝑖 , 𝛼 𝑗 = 𝛼𝑖 + (𝜎𝑐 )𝑖 𝑗 , and 𝛼𝑘 = 𝛼 𝑗 + (𝜎𝑐 ) 𝑗𝑘 . 𝜎𝑤
and 𝛽𝑖 , 𝛽 𝑗 , and 𝛽𝑘 are calculated analogously. On triangles where both 𝜎𝑐 and 𝜎𝑤 are non-singular, the stripe
texture functions are linearly interpolated, so a linear system in barycentric coordinates 𝑏𝑖 , 𝑏 𝑗 , 𝑏𝑘 is used to find
the locations of stripe intersections.

𝛼𝑖𝑏𝑖 + 𝛼 𝑗𝑏 𝑗 + 𝛼𝑘𝑏𝑘 = 𝑍𝑐

𝛽𝑖𝑏𝑖 + 𝛽 𝑗𝑏 𝑗 + 𝛽𝑘𝑏𝑘 = 𝑍𝑤

where 𝑍𝑐 and 𝑍𝑤 represent the stripe level sets ({𝑘𝑃 + 𝑃/4 | 𝑘 ∈ Z}) over △𝑖 𝑗𝑘 for the course and wale directions,
respectively. Knit graph vertices are placed at stripe intersections, and directed knit graph edges are designated
based on the level set values. In particular, vertices with the same 𝑍𝑤 are connected with wale edges in the
direction of increasing 𝑍𝑐 . Course edges are found analogously.
For faces where one of 𝜎𝑐 and 𝜎𝑤 are singular, we use the interpolant presented in [3]. Here 𝑃 is the period and 𝑛
is the triangle index. For ease of notation, we assume 𝜎𝑐 is singular and 𝜎𝑤 is not. Our strategy is symmetric if
𝜎𝑤 is singular and 𝜎𝑐 is not.

Barycentric region 1: 𝑏𝑘 ≤ 𝑏𝑖 & 𝑏𝑘 ≤ 𝑏 𝑗

𝛼𝑖𝑏𝑖 +
(
𝛼 𝑗 −

𝑃𝑛

3

)
𝑏 𝑗 +

(
𝛼𝑘 −

2𝑃𝑛
3

)
𝑏𝑘 +

𝑃𝑛

6

(
1 +

𝑏 𝑗 − 𝑏𝑖
1 − 3𝑏𝑘

)
= 𝑍𝑐

Barycentric region 2: 𝑏𝑖 ≤ 𝑏 𝑗 & 𝑏𝑖 ≤ 𝑏𝑘

𝛼𝑖𝑏𝑖 +
(
𝛼 𝑗 −

𝑃𝑛

3

)
𝑏 𝑗 +

(
𝛼𝑘 −

2𝑃𝑛
3

)
𝑏𝑘 +

𝑃𝑛

6

(
3 +

𝑏𝑘 − 𝑏 𝑗
1 − 3𝑏𝑖

)
= 𝑍𝑐
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Barycentric region 3: 𝑏 𝑗 ≤ 𝑏𝑖 & 𝑏 𝑗 ≤ 𝑏𝑘

𝛼𝑖𝑏𝑖 +
(
𝛼 𝑗 −

𝑃𝑛

3

)
𝑏 𝑗 +

(
𝛼𝑘 −

2𝑃𝑛
3

)
𝑏𝑘 +

𝑃𝑛

6

(
5 + 𝑏𝑖 − 𝑏𝑘

1 − 3𝑏 𝑗

)
= 𝑍𝑐

Orthogonal stripes are linear and given by: 𝛽𝑖𝑏𝑖 + 𝛽 𝑗𝑏 𝑗 + 𝛽𝑘𝑏𝑘 = 𝑍𝑤

(1)
The above system is simply the intersection of a line with a quadratic in each barycentric region. We solve for
𝑏𝑖 , 𝑏 𝑗 and 𝑏𝑘 individually in each region and then use the barycentric coordinates to determine the position of
the knit graph vertex. Within each region, edge connectivity is identical to the case of non-singular triangles as
described above. Across barycentric regions, vertices are connected using the strategy described below.

3.2 Across adjacent triangles:
Our method implements the connection of graph vertices across adjacent triangles through the creation of
“virtual" vertices on the triangle borders. In particular, in each triangle, we calculate the intersection of stripe
level sets with the boundary and connect them to any interior knit graph vertices. On singular triangles, this
is done separately on each barycentric region, as the underlying formulae are different on these domains. In a
final step, we merge and eliminate these virtual vertices based on proximity and connect up their associated knit
graph vertices.

4 EDGE LENGTH ERROR HISTOGRAMS

Fig. 2. We present histograms of the percent error in knit graph edges. Target edge length is defined by the period, 𝑃 . As in
[4], most edges have less than 10% error across models.
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5 LEMMA 1 PROOF

5.1 Simplified form for level set constraints
Before we establish the lemma, let us note a simplified form
for the level set constraint along a path 𝛾 . This is argued by
observing the two cases that occur when considering adjacent
segments of the polyline, illustrated in the inset figure. In both
the left and right diagrams, the four red arrows denote the four
terms below, respectively:

(−𝑠𝑖+1𝑖 𝜎𝑒𝑖𝑟
𝑖+1
𝑖 + 𝑠𝑖𝑖+1𝜎𝑒𝑖+1𝑟 𝑖𝑖+1) + (−𝑠𝑖+2𝑖+1𝜎𝑒𝑖+1𝑟

𝑖+2
𝑖+1 + 𝑠𝑖+1𝑖+2𝜎𝑒𝑖+2𝑟

𝑖+1
𝑖+2 ) (2)

In the left case, where 𝑣𝑖,𝑖+1 = 𝑣𝑖+1,𝑖+2, the middle two integrals cancel, as they are along the same segment, but in
opposite directions. In the right case, when 𝑣𝑖,𝑖+1 ≠ 𝑣𝑖+1,𝑖+2, the middle two integrals combine to form an integral
along the mesh edge from 𝑣𝑖,𝑖+1 to 𝑣𝑖+1,𝑖+2. In both cases, if we allow

∫
[𝑝,𝑞 ] 𝜎 to denote the path integral of 𝜎 along

the line segment between points 𝑝 and 𝑞, then Eq. (2) is equivalent to:∫
[𝑝𝑖 ,𝑣𝑖,𝑖+1 ]

𝜎 +
∫
[𝑣𝑖,𝑖+1,𝑣𝑖+1,𝑖+2 ]

𝜎 +
∫
[𝑣𝑖+1,𝑖+2,𝑝𝑖+2 ]

𝜎

In the left case, the middle integral vanishes, and in the right it is along a mesh edge. Applying this reasoning
inductively, we see that an equivalent expression for our level set constraint is:∫

𝛾

𝜎 =

∫
[𝑝0,𝑣0,1 ]

𝜎 +
𝑛−2∑︁
𝑖=0

(∫
[𝑣𝑖,𝑖+1,𝑣𝑖+1,𝑖+2 ]

𝜎

)
+
∫
[𝑣𝑛−1,𝑝𝑛 ]

𝜎

All of the path integral terms in the central sum are over mesh edges. Thus, we can assume WLOG that our
polyline 𝛾 is of this form.

5.2 Proof of Lemma 1

(a) Midpath case (b) Endpoint case

Fig. 3

Consider a polyline 𝛾 and a homologous curve 𝛾 ′ obtained by the change illustrated in Fig. 3a. The curve 𝛾 ′
follows the blue path around triangle𝑚 visiting vertices 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖+1, while curve 𝛾 follows the black path around
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triangle𝑚 visiting just 𝑣𝑖 and 𝑣𝑖+1. Triangle𝑚 must be non-singular as we are on the mesh𝑀 ′ = 𝑀 \ 𝐾 , and so
we have that:

0 = (𝑑1𝜎)𝑚 =

∫
[𝑣𝑖 ,𝑣𝑖+1 ]

𝜎 +
∫
[𝑣𝑖+1,𝑣𝑗 ]

𝜎 +
∫
[𝑣𝑗 ,𝑣𝑖 ]

𝜎

⇒
∫
[𝑣𝑖 ,𝑣𝑖+1 ]

𝜎 = −
∫
[𝑣𝑗 ,𝑣𝑖 ]

𝜎 −
∫
[𝑣𝑖+1,𝑣𝑗 ]

𝜎 =

∫
[𝑣𝑖 ,𝑣𝑗 ]

𝜎 +
∫
[𝑣𝑗 ,𝑣𝑖+1 ]

𝜎

Thus, we have that
∫
𝛾
𝜎 =

∫
𝛾 ′ 𝜎 . Analogous arguments can be applied to triangles near endpoints 𝑝0 and 𝑝𝑛 ,

illustrated in Fig. 3b. The integral equalities that result are:∫
[𝑝0,𝑣0,1 ]

𝜎 +
∫
[𝑣0,1,𝑣1,2 ]

𝜎 =

∫
[𝑝0,𝑣𝑗 ]

𝜎 +
∫
[𝑣𝑗 ,𝑣1,2 ]

𝜎

This implies that paths homologous under changes near the endpoints also have their path integral values
preserved. As paths are homologous if they differ by a sequence of such changes, we see that the lemma is proven.
Lastly, note that this result also holds for level set constraints applied to cycles, which we have referred to as
helix elimination constraints.

6 REMARK 1 DISCUSSION
In this section, we sketch an argument that helices in a course stripe pattern may not be defined without a wale
stripe pattern. Consider the instructive example below:

Fig. 4. Isotopic course (red) and wale (green) stripe patterns

As can be seen, the two stripe patterns are isotopic to each other, and what is seemingly a helix in the left
cylinder can be avoided by a tortured wale stripe pattern. In a more general scenario, i.e., on an arbitrary surface,
with an arbitrary number of potential helical stripes, we may consider disjoint topological neighborhoods of
each potential helical stripe. Isotopies restricted to these neighborhoods may draw the ends of these stripes
arbitrarily near each other, and any wale stripe pattern may then be imposed, which will avoid helices. The
isotopies can then be reversed to obtain a distorted wale stripe pattern that will avoid the original potential
helices. Thus, in finding and avoiding helices in our methods, we cannot restrict to imposing constraints or
referencing information from just 𝜎𝑐 and the course stripe pattern.
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7 REMARK 2 DISCUSSION
A helical stripe from a singular triangle 𝑎 to a singular triangle 𝑏 would need to follow a level set created at 𝑎 and
destroyed at 𝑏. We would like to argue that a helix elimination constraint along a cycle 𝛾 separating 𝑎 from 𝑏

locally makes it energetically very unfavorable to have such a level set. The result is a practical guarantee that
our helix elimination constraints will remove helices.

Fig. 5. Energetic unfavorability of helical course stripes (red and green) across a helix elimination constraint (blue). See text.

We refer to the figure above to guide our informal argument. When a helix constraint is imposed on a cycle 𝛾
that roughly follows the isocontours of the time function ℎ, there are typically no level sets that begin on one
side of 𝛾 and end on the other, as illustrated on the left. It is, however, possible for this to occur without violating
the constraint on 𝛾 , if there is another level set going the other direction which cancels it out, as illustrated in the
middle. The canceling level set is depicted in green. If there is a level set which is helical in shape, then this leaves
little room for a canceling level set to go the other direction, as illustrated on the right (some red course stripes
have been omitted to avoid crowding the diagram). Even if there is such a canceling level set (in green), the local
direction of 𝜎𝑐 or the stripe texturing function (represented with black arrow) will be nearly anti-aligned with
the underlying gradient of the time function, resulting in a large objective value.
As can be seen, it is difficult to make our argument watertight, because of similar ideas at play in §6. In

particular, it should be impossible to make such stripe patterns infeasible with constraints imposed just on 𝜎𝑐 , as
would be suggested by Remark 1.

8 STRIPE ALIGNMENT CONSTRAINTS WITH INTERIOR ENDPOINTS
This case is particularly useful when applying the global optimization approach of S2, when
one is motivated to work on relatively coarse meshes, for runtime purposes. Recall again,
that the endpoints must be in non-singular triangles, as level sets are not linear in singular
triangles. In the inset figure, we depict the scenario for the start point 𝑝0. As the stripe
texture function is linear, we can achieve a level set alignment by extending the polyline
to the boundary, and applying the standard form of the constraint to the polyline with
vertices 𝑝−1, 𝑝1, 𝑝2, . . . , 𝑝𝑛 . An analogous argument may be made for the endpoint in the
interior of a non-singular triangle.
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9 STRIPE PLACEMENT CONSTRAINTS WITH INTERIOR ENDPOINTS
As with the stripe alignment constraints with interior endpoints, these are useful for coarse triangulations. For
the subcases, the following diagram will be referenced, depicting the last segment of 𝛾 in blue, and the point in
question 𝑝 .

(a) Non-singular case (b) Singular case

9.1 Non-singular triangles
Case depicted in Fig. 6a. If 𝑝 has barycentric coordinates 𝑏𝑖 , 𝑏 𝑗 , 𝑏𝑘 , then the linear nature of the function on
triangle ijk allows us to see that: ∫

[𝑖,𝑝 ]
𝜎 = 𝑏 𝑗𝜎𝑖 𝑗 + 𝑏𝑘𝜎𝑖𝑘

9.2 Singular triangles
When we are looking to place stripes, the particular path to the point in question does not matter, as we are just
trying to specify the stripe texture function (mod 𝑃 ). As such, we use the orange curve, denoted [𝑖, 𝑝]′, in place
of the original line segment [𝑖, 𝑝], and the same effective constraint will result.
We work through the reasoning for one region, depicted in Fig. 6b, as the formulae for other regions is

analogous. The regions are labelled in green, so the region 3 case is shown. The relevant expression is Eq. (1),
which gives the behavior of the interpolant on singular triangles. Locally integrated values (starting at 0 at 𝑖) are
used: 𝛼𝑖 = 0, 𝛼 𝑗 = 𝜎𝑖 𝑗 , and 𝛼𝑘 = 𝜎𝑖 𝑗 + 𝜎 𝑗𝑘 . This gives us the expression:∫

[𝑖,𝑝 ]′
𝜎 =

(
𝜎𝑖 𝑗 −

𝑃𝑛

3

)
𝑏 𝑗 +

(
𝜎𝑖 𝑗 + 𝜎 𝑗𝑘 −

2𝑃𝑛
3

)
𝑏𝑘 +

𝑃𝑛

6

(
5 + 𝑏𝑖 − 𝑏𝑘

1 − 3𝑏 𝑗

)
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