
Supplementary Material for “CurlQuantization for Automatic
Placement of Knit Singularities”

1 AUXILIARY RESULTS

Fig. 1. Top (left to right): Elbow sleeve with time function, curl signal and knit graph. Bottom (left to right): Knit graph of
bent cylinder from Fig. 3 and render. Right: Fabricated sleeve (on 12 in mannequin) and bent cylinder (with 0.75 inch coin).

Fig. 2. Four-panel skirt. From left to right: Time function, wale curl signal, knit graph visualized with vertices on the panels.
Fabricated result (with 0.75 inch coin).

2 LINEAR CONSTRAINTS
Recall that the primary problem we aim to solve is given by Eq. (2) in the main text, subject to several additional

linear constraints briefly described in §4.3 of the main text. As noted there, all of the path integrals below are

discretized as simple finite sums of oriented 1-form values along edges. Here we detail these constraints as they

relate to the machine-knittability of knit graphs, and the notation is borrowed from the main text.
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(1) Eq. (4a), Helix-free condition: ∫
𝛾𝑖

𝜎𝑐,𝑠 = 0 𝑖 = 1, . . . , 𝑛pairs

Knit graphs are required to be helix-free, meaning that vertices making up a course row cannot have a

sequence of wale edges going between them. This is a bit paradoxical at first glance, as the yarn path in a

machine knit will ultimately have to helix, so that stitches may be made on top of existing course rows.

However, it is challenging to specify the exact amount of helicing needed. This is solved by the Autoknit

scheduler [Narayanan et al. 2018] via a post-processing tracing step, which applies a sequence of rules

and visits every node of the knit graph twice to generate such an appropriate yarn path. The helix-free

knit graph condition is a strong manufacturing constraint that ensures that the scheduler achieves this

behavior, even in the case of short-row ends.

(2) Eq. (4b) Morse decomposition: ∫
𝜇𝑖

𝜎𝑐,𝑠 = 0 𝑖 = 1, . . . , 𝑛Morse

Eq. (6) Homology generators: ∫
𝑔𝑙

𝜎 = k𝑔 𝑙 = 1, . . . , 2𝑔 + 𝑛bdy − 1

To handle richer topologies (greater than 2 boundaries), we decompose the model, in a Morse sense, into

cylinders along critical level sets of the time function. Just as in Mitra et al. [2024], we constrain the integral

of the 1-form 𝜎 to be 0 along these levels sets and only generate singularity pairs within each cylindrical

component. We also ask that the integral of 𝜎 along homology generators be an integer multiple of the

period. We construct these generators using the tree-cotree method of Dłotko [2012]. These generator

constraints are required to guarantee that we have a well-defined striping function𝑀 → S1 even in the

nontrivial homology. Fig. 3 below highlights the import of these constraints.

(3) Eq. (4c), Boundary Alignment:

𝜎𝑐,𝑠 |𝜕𝑀 = 0

This ensures that the boundary cycles of the knit graph align with the boundaries of the input model. This

is especially useful when the input model may contain jagged or non-uniform boundaries, such as Fig. 6(2)

of the main text.

(4) Eq. (4d), User-specified alignment:

𝜎𝑠 |𝑙 𝑗 = 0 𝑗 = 1, . . . , 𝑛align

This simply generalizes constraint (4c) to arbitrary edges in the model that may not be in the starting /

ending cycles of knitting. As shown in Fig. 9 from the main text, this finds use in the cut-and-sew setting

where a designer may want wale edges of the knit graph to line up with the patch boundaries.
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Fig. 3. Denote 𝜕𝑀 to be the boundary of the manifold. Let us use (𝜕𝑀)0 = ⊔𝑁0

𝑖=1
(𝜕𝑀)𝑖

0
and (𝜕𝑀)1 = ⊔𝑁1

𝑖=1
(𝜕𝑀)𝑖

1
to label

those boundaries and components on which the time function is set to 0 and 1, respectively. The total number of boundary
components is 𝑁 = 𝑁0 + 𝑁1. Left: No homology constraints cause stripe discontinuities around all boundaries. Middle:
Only constraining the generator around (𝜕𝑀)1

1
cause discontinuities near (𝜕𝑀)2

1
and (𝜕𝑀)1

0
. Right: Enforcing the homology

constraints on 𝑛𝑏𝑑𝑦 − 1 boundaries ensures no stripe discontinuities. Figure from Fig. 8 [Mitra et al. 2023] (borrowed with
author’s permission).

3 EDGE LENGTH ERROR HISTOGRAMS

Fig. 4. Edge length histograms for fabricated models. As is the case with Autoknit [Narayanan et al. 2018], our edge length
errors are < 10%. While our histograms don’t peak near 0, we have fewer outliers than Narayanan et al. [2018] due to the use
our 𝐿2 objective.
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Fig. 5. Reproduction of Fig. 4 from main text. Foliation behavior near a +1 singularity, showing a source (red) and saddle
(yellow) in close proximity, with level sets emanating to the right. In the left and middle images, separatrices are orange. Left:
Singular foliation structure as in Knöppel et al. [2015] (from Mitra et al. [2024]). Middle: We place singularities on edges.
Right: Non-helicing path constraint visualized in blue for a positive singular edge.

4 STRIPE PATTERN TRACING AND KNIT GRAPH GENERATION
Having solved for both course and wale 1-forms, 𝜎𝑐 and 𝜎𝑤 respectively, we trace the generated stripe patterns to

produce the knit graph. Our 1-forms are integrated along a spanning tree of mesh edges and the integrated values,

𝛼 and 𝛽 are stored modulo the period, 𝑃 at every corner i.e., base of a halfedge, in a face. Crucially, because our

singularities lie on edges and not on faces, 𝜎𝑐 and 𝜎𝑤 are nonsingular at all faces. Thus, for face 𝑓𝑖 𝑗𝑘 , the stripe

texturing coordinates are simply linearly interpolated to find course and wale intersections. In particular, we

solve the linear system,

𝛼𝑖𝑏𝑖 + 𝛼 𝑗𝑏 𝑗 + 𝛼𝑘𝑏𝑘 = 𝑍𝛼

𝛽𝑖𝑏𝑖 + 𝛽 𝑗𝑏 𝑗 + 𝛽𝑘𝑏𝑘 = 𝑍𝛽

(1)

where 𝑏𝑖 , 𝑏 𝑗 and 𝑏𝑘 are barycentric coordinates of 𝑓𝑖 𝑗𝑘 and 𝑍𝛼 and 𝑍𝛽 are the stripe level sets passing through

𝑓𝑖 𝑗𝑘 . This allows for more robust tracing and obviates the need for the effective interpolant construction of Mitra

et al. [2024] or the use of a non-linear interpolant [Knöppel et al. 2015]. Additionally, we simplify tracing of the

course rows by using a mesh with average edge length smaller than the period. This ensures that there is only

one choice of level set born at a singular edge. Much like in Mitra et al. [2024, 2023], to connect vertices across

faces, we create virtual vertices on triangle borders by computing the intersection of the stripe level set with the

triangle border. These virtual vertices are then connected to the interior knit graph vertices.

5 FOLIATION GUARANTEES
As in Mitra et al. [2024], we are able to guarantee non-helicing of all level sets of our course stripe texturing

function (and not just the level sets that are used to trace course rows). For detailed definitions of foliations

concepts we refer to their paper. This non-helicing of all level sets is done by joining saddle points of the resulting

foliation with our path constraints. These ensure that certain separatrices join the saddles, and that all level

sets starting at one short row end, end up at the other short row end that it is joined to via a non-helicing path

constraint. Figure 5 (also in the main text) illustrates the similarity in foliation structure near a +1 singularity
placed on a triangle face, and on an edge, or bigon face in the lens complex.
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We characterize the foliation structure in the vicinity of a course singular edge. For this we recall the definition

of index of a discrete 1-form 𝜎 on a polyhedral mesh defined in Gortler et al. [2006]. At a vertex 𝑣 :

ind𝜎 (𝑣) :=
2 − sc(𝑣)

2

In the above, sc(𝑣) denotes the number of sign changes in the sign of 𝜎 as one traverses the outgoing half-edges

in cyclic order. An analogous definition of index for faces is specified, with sc(𝑓 ) denoting the number of times

the sign of 𝜎 changes as one traverses the cycle of half-edges circulating CCW about the face.

Let us consider the neighborhood of a singular edge and for simplicity, we assume that we are looking at

a singular edge with index +1, reflected in the schematic figure below. As in the text, we let 𝑒𝑖+ 𝑗+ denote the

singular edge and assume 𝑖+ 𝑗+ is the direction more aligned with ∇ℎ. Let 𝑘 denote the vertex opposite halfedge

𝑗+𝑖+, and we use 𝑁 +
to denote the illustrated neighborhood of 𝑒𝑖+ 𝑗+ .

Fig. 6. Notation, and visual proof of Prop. 1. Colored arrows denote the direction of increasing 𝜎 over the edges and halfedges.
See proof text for more.

Proposition 1. In a neighborhood 𝑁 + of a +1 singular edge 𝑒𝑖+ 𝑗+ , let us assume that

sign(𝜎𝑙𝑚) = sign(ℎ(𝑚) − ℎ(𝑙)) for all halfedges 𝑙𝑚 not in triangle 𝑖+ 𝑗+𝑘 (2)

Then three inequality constraints:

sign(𝜎𝑖+ 𝑗+ ) = sign(𝜎 𝑗+𝑖+ ) (3a)

sign(𝜎 𝑗+𝑘 ) > 0 (3b)

sign(𝜎𝑘𝑖+ ) > 0 (3c)

imply ind𝜎 (𝑘) = −1, ind𝜎 (𝑖+) = 0, and ind𝜎 ( 𝑗+) = 0.

Proof. The argument is made visually via the arrows in Fig. 6, which denote directions of positive 𝜎 on edges

and halfedges. Eq. (2) implies the red arrows. Eq. (3a) along with the placement of a singular edge on 𝑒𝑖
+ 𝑗+

implies

the blue arrows. Eqs. (3b), (3c) imply the green arrows. Indices of 𝑖+, 𝑗+, and 𝑘 can be inferred via simple counting

and the index definition. □

Lastly, we have the following:

Lemma 1. If ind𝜎 (𝑣) = −1 and 𝑑Δ
1
𝜎 = 0 on all faces containing 𝑣 , then 𝑣 is a saddle vertex of the foliation induced

by 𝜎 .
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Fig. 7. Visual proof of Lemma 1. Blue arrows denote direction of positive 𝜎 over halfedges, while cyan denotes level sets of 𝜎 ,
and orange lines denote separatrices. See proof text for more.

Proof. We again argue by sketch. See Fig. 7 for an illustration of a index −1 vertex. Due to the fact that

𝑑Δ
1
𝜎 = 0, the level sets of 𝜎 , i.e., the leaves of the foliation, are linear over the nearby triangles. Thus, whenever

one has a sign change there is a particular level set which forms a separatrix coming into or out of 𝑣 . With four

sign changes, we can see that the 1-ring of 𝑣 is split into four hyperbolic sectors. Thus, 𝑣 is a saddle vertex of the

foliation. □

The above arguments justify our use of the particular path constraints that we select, i.e., those that connect

𝑘 with the analogous vertex near the −1 singularity. Analogous results hold near the −1 singularity. Within

our optimization framework, 𝑑Δ
1
𝜎 = 0 on all triangular faces, and assumption (2) is strongly motivated by our

objective, which aims to align 𝛿𝜎 with ∇ℎ. Lastly, we motivate satisfaction of (3a), (3b), and (3c) by choosing

singular edges that are well aligned with ∇ℎ. Empirically, we found that we are able to robustly join separatrices

and prevent helicing of any level sets via these path constraints. If guaranteed robustness is desired, these

inequality constraints can be incorporated into the optimizations, at the cost of some computational speed.

Lastly, we note the practical improvement upon the corresponding constraints with face-based singularities.

These required us to fix the form over singular triangles in a post-processing optimization, and to match particular

points on the edges of singular triangles. This was due to the chicken-and-egg problem of not being able to

know separatrices without knowing the form that one is optimizing for (and which must be held to the path

constraints). Here, we may simply match vertices, and can avoid any freezing of the 1-form 𝜎 , and any similar

circular issues.
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