
Curl Quantization for Automatic Placement of Knit Singularities
RAHUL MITRA∗, Boston University, USA and LightSpeed Studios, USA
MATTÉO COUPLET, Boston University, USA
TONGTONG WANG, LightSpeed Studios, China
MEGAN HOFFMAN, Northeastern University, USA
KUI WU, LightSpeed Studios, USA
EDWARD CHIEN, Boston University, USA

Fig. 1. A knitting time function is computed over an input model, and the curl signal of its gradient is measured in the two orthogonal knitting
directions, course and wale. Our method automatically places singularities in regions of high curl while satisfying all structural manufacturing
constraints. The orthogonal stripe patterns are intersected to generate a smooth knit graph suitable for both artifact-free yarn-level rendering and
machine-knitting.

We develop a method for automatic placement of knit singularities based on
curl quantization, extending the knit-planning frameworks of Mitra et al.
[2024, 2023]. Stripe patterns are generated that closely follow the isolines of
an underlying knitting time function, and has course and wale singularities
in regions of high curl for the normalized time function gradient and its 90◦
rotated field, respectively. Singularities are placed in an iterative fashion,
and we show that this strategy allows us to easily maintain the structural
constraints necessary for machine-knitting, e.g., the helix-free constraint,
and to satisfy user constraints such as stripe alignment and singularity

∗Part of this work was done when Rahul Mitra was an intern at LIGHTSPEED.

Authors’ Contact Information: Rahul Mitra, Boston University, Boston, USA and
LightSpeed Studios, Los Angeles, USA, rahulm@bu.edu; Mattéo Couplet, Boston Uni-
versity, Boston, USA, mcouplet@bu.edu; Tongtong Wang, LightSpeed Studios, Shen
Zhen, China, wangtong923@gmail.com; Megan Hoffman, Northeastern University,
Boston, USA, m.hofmann@northeastern.edu; Kui Wu, LightSpeed Studios, Los Ange-
les, USA, walker.kui.wu@gmail.com; Edward Chien, Boston University, Boston, USA,
edchien@bu.edu.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
SIGGRAPH Conference Papers ’25, Vancouver, BC, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1540-2/25/08
https://doi.org/10.1145/3721238.3730715

placement. Our more performant approach obviates the need for a mixed-
integer solve [Mitra et al. 2023], manual fixing of singularity positions, or
the running of a singularity matching procedure in post-processing [Mitra
et al. 2024]. Our global optimization also produces smooth knit graphs that
provide quick simulation-free previews of rendered knits without the surface
artifacts of competing methods. Furthermore, we extend our method to the
popular cut-and-sew garment design paradigm. We validate our method by
machine-knitting and rendering yarn-based visualizations of prototypical
models in the 3D and cut-and-sew settings.

CCS Concepts: • Computing methodologies → Shape analysis; • Ap-
plied computing → Computer-aided manufacturing.

Additional Key Words and Phrases: Computational Knitting, Vector Fields

ACM Reference Format:
Rahul Mitra, Mattéo Couplet, Tongtong Wang, Megan Hoffman, Kui Wu,
and Edward Chien. 2025. Curl Quantization for Automatic Placement of Knit
Singularities. In Special Interest Group on Computer Graphics and Interac-
tive Techniques Conference Conference Papers (SIGGRAPH Conference Papers
’25), August 10–14, 2025, Vancouver, BC, Canada. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3721238.3730715

1 Introduction
Machine knitting is an additive manufacturing technique that cre-
ates garments by interlocking yarn loops through a CNC knitting
machine (Computer Numerical Control knitting machine). It has

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

HTTPS://ORCID.ORG/0009-0003-7342-0970
HTTPS://ORCID.ORG/0009-0008-9175-425X
HTTPS://ORCID.ORG/0009-0005-6585-3009
HTTPS://ORCID.ORG/0000-0003-2283-8587
HTTPS://ORCID.ORG/0000-0003-3326-7943
HTTPS://ORCID.ORG/0000-0001-5084-7638
https://orcid.org/0009-0003-7342-0970
https://orcid.org/0009-0008-9175-425X
https://orcid.org/0009-0005-6585-3009
https://orcid.org/0000-0003-2283-8587
https://orcid.org/0000-0003-3326-7943
https://orcid.org/0000-0001-5084-7638
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3721238.3730715
https://doi.org/10.1145/3721238.3730715


2 • Mitra et al.

been widely used in everyday applications, including clothing, home
decor, and personal accessories. With advances in functional knit-
ting, e.g., actuation [Albaugh et al. 2019; Luo et al. 2022], tactile [Al-
baugh et al. 2021], and sensing [Luo et al. 2021], there is an increasing
demand for a system capable of converting 3D shapes into knittable
structures, serving as carriers for various functionalities in archi-
tecture [Sharmin and Ahlquist 2016], robotic coverings [Zlokapa
et al. 2022], and conformal sportswear [Liu et al. 2021]. However,
it is a labor-intensive process to design knitted garments, requir-
ing experienced knitting engineers to manually translate artists’
designs into machine instructions. It is an even more challenging
task to automatically transform general 3D shapes into machine-
knittable structures due to the specific geometric and structural
constraints required by the nature of the interlocking yarns and
machine constraints during fabrication.
Previous works have attempted both local greedy algorithms

and global parametrization approaches to tackle this problem. Un-
fortunately, these methods do not incorporate user constraints
[Narayanan et al. 2018] or fail to guarantee knittability [Wu et al.
2018]. The latter often requires cutting along direction-mismatched
edges [Jones et al. 2021; Wu et al. 2022], which must be sewn after-
ward. This seam requires additional labor, hindering a fully auto-
mated fabrication process, and is also unacceptable for animation
purposes, as it necessitates specialized knit structures and intro-
duces visible bump artifacts.
We solve this problem by building upon two prior works [Mi-

tra et al. 2024, 2023] that approach stitch structure planning from
a stripe-texturing perspective [Knöppel et al. 2015], and focus on
maintaining helix-free course stripes and thus knit structures. As
shown in Fig. 2, knit singularities – i.e., increases and decreases
in the wale direction and short rows in the course direction – are
essential for creating structures that conform to the input shape.
We introduce a faster, iterative automatic method for singularity
placement, which does not need to solve an expensive mixed-integer
problem or borrow placements from striping methods that may need
manual adjustment if not suitable. Instead, singularity placement
is considered as a curl quantization problem, as stripe bifurcations,
corresponding to knit irregularities, occur at integer curl localiza-
tions. For course stripes/rows, we approximate initial curl density of
normalized knitting time function gradient (§4.1) with integer place-
ments, similar to early approaches to quad meshing with vertices
of high/low valence (>/< 4) placed in regions of low/high Gaussian
curvature [Ben-Chen et al. 2008].
Our greedy iterative approach allows us to maintain structural

and user constraints as we place singularities at regions of highest
curl. In the course direction, singularities are placed in pairs on
isolines of the time function, ensuring helix-free rows. In the wale
direction, we have no such constraint, but we ensure that singulari-
ties are far enough from each other for construction of a valid knit
graph. After each iteration, our 1-form (stripe pattern) evolves and
its curl is used as the signal to place the next singularity.

A novel discretization is used in the 1-form setting, with discrete
1-forms on a lens complex [Soliman et al. 2021]. Curl singularities
are placed on edges of the input mesh, as opposed to faces as in
prior works. Crucially, this formulation allows for simpler and more

robust stripe tracing to produce the knit graph, and maintains the
foliation guarantees of [Mitra et al. 2024] in a simpler fashion.
We demonstrate our method in two related settings: that of ar-

bitrary 3D input meshes and that of intrinsically-represented 2D
cut & sew panels for garments [Kaspar et al. 2021; Korosteleva
and Sorkine-Hornung 2023]. The latter is a more common setting
in industrial garment design and boosts the applicability of our
method. We fabricate models in both settings and show that our
method achieves comparable uniformity in stitch size to Autoknit
[Narayanan et al. 2018], but smoother stitch patterns. Addition-
ally, we demonstrate an application of our method for generating
high-quality visual outputs, enabling knit structure previews and
facilitating applications in virtual applications, such as VFX and
games. Prior methods do not ensure truly plausible knit structures,
resulting in visible artifacts on the surface [Wu et al. 2018], or do
not produce globally smooth stitch patterns [Narayanan et al. 2018].

Fig. 2. A close-up of a knit structure and three stitch irregularities
(left), along with the corresponding stitch mesh [Yuksel et al. 2012]
(middle) and knit graph (right) representations. A decrease (orange),
an increase (green), and a short-row end (pink) are shown. The doubled
wale resolution of stitchmesh, as a single knit graph vertex, corresponds
to two stacked stitches (in wale direction) [Narayanan et al. 2018].

To recap, our contributions are:
• A curl quantization formulation for singularity placement.
• An automatic iterative solution strategy that ensures machine-
knittability (e.g., helix-free) and user constraints (e.g., singularity
avoidance), and achieves comparable stitch size regularity.

• A curl placement on edges for more robust knit graph tracing.
• An extension to patch-based (intrinsic) garment models.

2 Related Work
Knit structures are formed by interlacing yarn into successive loops
(Fig. 2), creating rows of stitches called courses. The direction of
knitting rows over time is known as wale direction, and columns
of stitches are wales. While the standard knit stitch, produced by
pulling a new loop through the back of an existing loop, is the most
common, various irregular stitches are used to shape the fabric,
including increase (adding extra loops to expand), decrease (merging
loops to narrow), and short-row (partial rows to create local shaping),
which are used to create complex knit shapes and textures.

Yuksel et al. [2012] first introduced stitch meshes, which abstract
interlocked stitch structures into quad-dominant meshes, with pen-
tagonal or triangular faces for irregular stitches. Such meshes were

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



Curl Quantization for Automatic Placement of Knit Singularities • 3

primarily intended for rendering and animation purposes. Later, Wu
et al. [2019] extended this framework for hand-knitting. To bridge
the gap between 3D modeling and industrial knitting machines,
McCann et al. [2016] brought the knit compiler to the graphics
community, which can schedule knitting time and needles and gen-
erate low-level knitting machine instructions for automated knit-
ting. This work also introduced the knit graph representation for a
stitch structure, which is roughly dual to the stitch mesh represen-
tation (see Fig. 2). Several follow-up works have further refined this
compiler, e.g., completeness [Lin et al. 2023], ease-of-use [Lin et al.
2024], and abstractions [Hofmann et al. 2023]. Leveraging the knit
compiler and automatic design-to-fabrication pipelines, numerous
functionalities have been realized in the form of knitting, including
soft actuation [Albaugh et al. 2019], tactile [Albaugh et al. 2021],
sensing [Luo et al. 2021; Zlokapa et al. 2022], deformation absorp-
tion [Liu et al. 2021], pneumatic actuation [Luo et al. 2022], and
illusion [Zhu et al. 2024]. In this work, we use stitch meshes [Yuksel
et al. 2012] and knit graphs [Narayanan et al. 2018] to represent
knit structures for rendering and machine knitting, respectively.
In addition to advancements in knit compilers and functional

knitting, significant efforts have focused on developing more intu-
itive and automated design pipelines, e.g., shape primitives [Kaspar
et al. 2019; McCann et al. 2016], cut & sew patterns [Kaspar et al.
2021], and 2D design interfaces [Twigg-Smith et al. 2024a,b]. De-
spite these strides, automatically transforming general 3D shapes
into machine-knittable designs remains a challenging problem. Wu
et al. [2018] introduced an automatic pipeline to convert arbitrary
shapes into quad-dominant stitch meshes. However, their method
does not guarantee the resulting meshes are machine-knittable.
Narayanan et al. [2018] proposed a computational approach that
“peels” stitch rows from a 3D mesh, aligning them to a time field.
This was later extended by Narayanan et al. [2019], enabling stitch-
type editing through an augmented stitch mesh structure. Instead
of iterative mesh peeling, Jones et al. [2021] utilized quad meshing
with user-defined singularities as input. Any mismatched edges in
the resulting mesh were cut and treated as seams. Wu et al. [2022]
introduced a physics-based simulation to minimize the cutting-edge
length, ensuring the resulting knit object could be physically worn.

Nader et al. [2021] first treated knit graph generation as a global
stripe optimization problem using the framework of Knöppel et al.
[2015]. However, their method could not guarantee knittability due
to the presence of helices in the stripe patterns. A quad-meshing-
based fix for these helicing stripes is suggested, but comes without
guarantees. Addressing this limitation, Mitra et al. [2023] intro-
duced several linear constraints within the space of differential
1-forms to more robustly eliminate helices, ensuring the genera-
tion of helix-free knit graphs. However, in their work, singularity
positions originated from either Knöppel et al. [2015], which may
have stripes escape out of the boundaries and poorly aligned sin-
gularities, or by solving a very expensive mixed-integer problem
(Strategy 2) where the number of integer variables scales with the
number of faces in the input mesh. Building on the stripes line of
work, Mitra et al. [2024] presented a topological understanding of
stripe patterns using the concept of singular foliations. While their
method allowed for the automatic pairing of optimal singularities,
the placement of these singularities remained manual, which is

both time-consuming and labor-intensive. This work extends the
framework of global stripe pattern optimization [Mitra et al. 2024,
2023] by presenting a method for the automatic placement of knit
singularities. Our greedy curl-informed algorithm does not require
solving a large mixed-integer problem or manual placement and
fixing of singularities and allows for the incorporation of several
user constraints.

3 Background
Vector fields, integrability, and curl. We recall a few important

definitions here and refer the reader to Crane et al. [2013]; de Goes
et al. [2016] for more detail. A vector field 𝑉 on a surface 𝑀 is a
continuous specification of a vector at each point. One common
example is the gradient of a differentiable function 𝑓 : 𝑀 → R,
denoted ∇𝑓 . Most vector fields are not gradients of a function, but
if they are, we say that they are integrable. On domains that are
simply connected (disc-like, i.e., homeomorphic to D2) a vector field
is integrable if and only if its curl vanishes: ∇ × 𝑉 = 0. Taking a
small enough neighborhood around any point on𝑀 gives a simply-
connected set, so vanishing curl is equivalent to local integrability,
and if ∇ × 𝑉 = 0 in such a small neighborhood, one can define a
function 𝑔 locally for which 𝑉 = ∇𝑔.
In our discretized setting, the input is a triangular mesh 𝑀 =

(𝑉 , 𝐸, 𝐹 ), with sets of vertices, edges, and faces, respectively. A vec-
tor field may be represented as a discrete 1-form 𝜎 : 𝐸 → R, an
assignment of a real number to each oriented edge. The curl of such
a vector field is given by the first exterior derivative operator, 𝑑1,
an |𝐹 | × |𝐸 | matrix that calculates the oriented sum of 𝜎 around
each triangular face. As in the continuous setting, if (𝑑1𝜎)𝑡 = 0, it
is locally integrable and we may define a linear function 𝑔 over 𝑡
such that 𝜎 is equal to the change in 𝑔 over the edges of 𝑡 .
Lastly, in our optimization we use the Whitney interpolant to

interpret a discrete 1-form as a face-based vector field. This gives a
formula for interpolating such a representation to the entire face of
a triangle (see Eq. 16 in de Goes et al. [2016]), but we only use the
value at the barycenter, and denote this:

𝛿 (𝜎𝑖 𝑗 , 𝜎 𝑗𝑘 , 𝜎𝑘𝑖 ) :=
(𝜎𝑘𝑖 − 𝜎𝑖 𝑗 )p⊥𝑗𝑘 + (𝜎𝑖 𝑗 − 𝜎 𝑗𝑘 )p⊥𝑘𝑖 + (𝜎 𝑗𝑘 − 𝜎𝑘𝑖 )p⊥𝑖 𝑗

6|𝑡𝑖 𝑗𝑘 |
(1)

In the above, p⊥
𝑖 𝑗
, p⊥

𝑗𝑘
, p⊥

𝑘𝑖
denote the edge vectors rotated by 𝜋/2

with respect to the face normal, and |𝑡𝑖 𝑗𝑘 | denotes the triangle area.

Form-based stripes. The texturing function for a stripe pattern
may be viewed as a periodic function 𝛼 : 𝑀 → S1. Following Knöp-
pel et al. [2015], one may specify such a function via its gradient,
with a discrete 1-form 𝜎 : 𝐸 → R that has integer curl singularities
on faces 𝑑1𝜎 = 2𝜋k with k ∈ Z |𝐹 | . Note that the periodic nature of
the texturing function allows integer multiples of curl, unlike the
vanishing curl requirement mentioned in the previous subsection
for regular scalar functions. Optimization directly in the space of
discrete 1-forms was first considered in Noma et al. [2022] and built
upon in Mitra et al. [2024, 2023]. An example of a texturing function
on a singular (𝑘𝑓 ≠ 0) triangle is shown in Fig. 4. Lastly, for the
remainder of the paper, we replace 2𝜋 with the desired period 𝑃 ,
which will reflect the course row height or wale column width.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



4 • Mitra et al.

Lens complex. For placement of sin-
gularities, we consider an extension
of the standard triangle mesh struc-
ture that includes bigons for each of
the triangle edges, referred to as a lens
complex in Soliman et al. [2021] (see
inset). This extends the set of faces
𝐹 = 𝐹 ⊔ 𝐵 to include the set of such
bigons 𝐵, and doubles the set of edges, denoted 𝐸, turning each
original half-edge into its own edge (the vertex set𝑉 remains fixed).
This construction allows us to define 1-forms that disagree on twin
half-edges of the original triangle mesh, and we place singularities
on these bigons. This results in a piecewise linear stripe pattern on
all triangular faces, allowing for simpler and more robust knit graph
tracing (detailed in Supp. §4). The first exterior derivative extends
naturally to this context and we use 𝑑Δ1 and 𝑑𝐵1 to denote the blocks
corresponding to 𝑑1 on the triangular and bigon faces, respectively.

Structural manufacturing constraints. To use themachine-knitting
compiler of Narayanan et al. [2018], one requires several properties
of the knit graph, and we mention the most challenging ones here.
Property 2 is the hardest, and asks that the knit graph be helix-free:
two nodes in a course row may not be intersected by the same
wale column. Intuitively, if this is violated, the course row is offset
from itself as it winds around the shape. We collect Property 3
and 4 (limited node degree and simple short rows), into a practical
constraint that we call singularity separation. Essentially, they ask
that course/wale singularities be sufficiently far apart from each
other. Lastly, Property 5: simple splits/merges, asks that there not be
stitch singularities near critical isolines of the time function.

4 Method
We now describe our iterative optimization procedure to generate
machine-knittable stitch structures. A pair of orthogonal course
and wale stripe patterns are generated, with automatic singularity
placement informed by the model geometry. These stripes are then
traced to form a helix-free knit graph which may be fed to the knit-
ting compiler [Narayanan et al. 2018] and printed on an industrial
knitting machine. We present details of the tracing in Supp. §4.

4.1 A discrete curl quantization problem
For automatic singularity placement, we view the problem as one of
curl quantization of a non-integrable vector field. In particular, for
the course rows, this vector field is derived from the knitting time
function ℎ : 𝑀 → [0, 1] which takes values 0 and 1 along starting
and ending boundaries of𝑀 , the surface to be knit. The isolines of
ℎ specify the desired directionality of course rows.

Naively, one might try to use ℎ directly as a texturing function,
but the spacing between isolines, proportional to 1/∥∇ℎ∥, may vary
widely over the surface. Thus, we use its normalized gradient to in-
form our course texture function and its rotated (counterclockwise)
vector field for the wale texture function:

∇ℎ := ∇ℎ
∥∇ℎ∥ & ∇ℎ⊥ := Rot𝜋/2

(
∇ℎ

)
.

Fig. 3. Top: ∇ × ∇ℎ informs the placement of short row ends. Bottom:
∇ × ∇ℎ⊥ informs the placement of wale increases (positive curl; red)
and decreases (negative curl; blue). Integrating the 1-form 𝜎𝑐 or 𝜎𝑤
around a singularity yields its index. Intuitively, the curl is the limit
of integrals around infinitesimal loops. Integrals over portions closer
to the “spine” of the bent cylinder and to the poles of the sphere make
larger (absolute) contributions than those further away.

While ∇ℎ is clearly integrable, ∇ℎ and ∇ℎ⊥ are not. Figure 3 shows
that for course rows, positive/negative curl correspond to regions
suitable for short row ends. For wale columns, positive/negative curl
correspond to potential increase/decrease placements, respectively.
As described in §3, we aim for a valid texturing function by

specifying a 1-form with curl quantized on bigon faces of the lens
complex. In particular, for course rows we aim to find a nearly
integrable 1-form 𝜎 : 𝐸 → R and a singularity index on bigons k𝐵 ∈
{−1, 0, +1} |𝐸 | in the following quadratic mixed-integer problem:

min
𝜎, k𝐵

F (𝜎) :=
∑︁
𝑡 ∈𝐹

𝐴𝑡 ∥(𝛿𝜎)𝑡 − (∇ℎ)𝑡 ∥2 (2a)

such that 𝑑Δ1 𝜎 = 0 (2b)

𝑑𝐵1 𝜎 = 𝑃k𝐵 (2c)

For the wale columns, we replace ∇ℎ with ∇ℎ⊥ in the above prob-
lem. Going forward, we will use 𝜎𝑐 and 𝜎𝑤 to denote the 1-forms
for the course/wale patterns, respectively. If an equation or state-
ment applies to both patterns 𝜎 will be used. We append additional
linear constraints that reflect structural and user constraints in our
optimization, but we delay details of these to §4.3.
The problem above may be viewed as a discretization of a con-

tinuous one where the optimal vector field 𝑉 has quantized curl
equal to the sum of Dirac delta measures placed at singular points

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



Curl Quantization for Automatic Placement of Knit Singularities • 5

𝑝1, . . . , 𝑝𝑛 ∈ 𝑀 , scaled by ±1 indices 𝑘1, . . . , 𝑘𝑛 ∈ {−1, +1}.

min
𝑉 , 𝑝1,...,𝑝𝑛

∫
𝑀

∥𝑉 − ∇ℎ∥2 (3a)

such that ∇ ×𝑉 = 𝑃

𝑛∑︁
𝑖=1

𝑘𝑖𝛿 (𝑝𝑖 ) (3b)

Unfortunately, this is ill-posed with objective (3a) diverging near
the isolated curl singularities 𝑝𝑖 . This is analogous to the discrete
connection smoothness energy of Crane et al. [2010], which also
diverges under refinement, but still proves useful for application.

4.2 An iterative framework
As mentioned previously, the quadratic mixed-integer problem out-
lined in Eqs. (2a),(2b),(2c) is not complete, and must be augmented
by additional structural and user constraints. One important ex-
ample is the helix-free knit graph requirement which imposes a
loose desideratum that pairs of course singularities should lie on
similar isolines of the time function ℎ. This is enforced via linear
path constraints described more fully in §4.3.1. Other examples in-
clude singularity separation and simple splits/merges, which are
incorporated into the singularity selection process (§4.4).
Prior global methods for this and related problems [Jakob et al.

2015; Knöppel et al. 2015] cannot easily handle these essential addi-
tional constraints (amongst others). Thus, we pursue an iterative
approach where we place singularities at high curl locations in each
iteration, while maintaining satisfaction of these. In summary, at
each step, we consider adding singularities to the current iterate
according to steps roughly outlined below.

(1) Given a set of accumulated singularities, solve for stripes that
minimize objective F (𝜎); terminate if F (𝜎) is not lowered.

(2) Evaluate the curl of the current iterate, correcting for local curl
imparted by prior singularity placement.

(3) For courses, place pairs of singularities along time function
isolines with the highest curl range. For wales, place a singularity
on the edge with the highest absolute curl.

Lastly, we note that the course pattern is calculated before the
wale pattern, as it is slightly more constrained with the helix-free
condition, and singularity separation imposes further conditions on
the second pattern to be optimized.

4.3 Iterate Optimization & Potential Termination
Let 𝜎𝑠 , 𝜎𝑐/𝑤,𝑠 with 𝑠 = 0, 1, 2, . . . denote iterates of our optimiza-
tion, and k𝐵,𝑠 , k

𝑐/𝑤
𝐵,𝑠

∈ {−1, 0, +1} |𝐸 | denote the accumulated set
of course/wale singularities at step 𝑠 (by gathering ±1 singular-
ity indices on edge bigons). We initialize k𝐵,0 = 0 to denote no
singularities selected. Given k𝐵,𝑠 we solve a constrained quadratic
optimization for 𝜎𝑠 . This iterate will have the singularities selected
to this point, and will also satisfy structural non-helicing constraints,
boundary constraints, and Morse constraints akin to those found in
Mitra et al. [2024, 2023]. For this problem, replace 𝜎 with 𝜎𝑠 and k𝐵

Fig. 4. Foliation behavior near a +1 singularity, showing a source
(red) and saddle (yellow) in close proximity, with level sets emanating
to the right. In the left and middle images, separatrices are orange.
Left: Singular foliation structure as in Knöppel et al. [2015] (from
Mitra et al. [2024]). Middle: We place singularities on edges. Right:
Non-helicing path constraint visualized in blue for the singular edge.

with k𝐵,𝑠 in Problem (2), and include the linear constraints:∫
𝛾𝑖

𝜎𝑐,𝑠 = 0 𝑖 = 1, . . . , 𝑛pairs (4a)∫
𝜇𝑖

𝜎𝑐,𝑠 = 0 𝑖 = 1, . . . , 𝑛Morse (4b)

𝜎𝑐,𝑠 |𝜕𝑀 = 0 (4c)
𝜎𝑠 |𝑙 𝑗 = 0 𝑗 = 1, . . . , 𝑛align (4d)

Eq. (4c) expresses course boundary alignment and Eq. (4d) expresses
any user alignment constraints along edge sequences or cycles 𝑙 𝑗
where 𝑛𝑎𝑙𝑖𝑔𝑛 is the number of such edge paths. An example of such
constraints may be seen in Fig. 9 left. Eq. (4b) expresses path integral
constraints along critical (in the Morse sense) isolines 𝜇𝑖 of the time
function. All of the path integral constraints are discretized as simple
oriented sums of 1-form values along edges. Eqs. (4b), (4c), and (4d)
are identical to those from Mitra et al. [2024]. We detail Eq. (4a)
below.

4.3.1 Non-helicing path constraints. For the course pattern, with
each pair of singularities inserted, we introduce a non-helicing path
constraint (4a). The integral is over a path 𝛾𝑖 that goes from the
positive short row end singularity to the negative short row end
singularity. In particular, let 𝑒𝑖+ 𝑗+ , 𝑒𝑖− 𝑗− denote the positive/negative
singular edges and assume that the half-edge going from 𝑖+/− to
𝑗+/− is more aligned with ∇ℎ. Then the path will run from the
vertex opposite halfedge 𝑒 𝑗+𝑖+ to the vertex opposite 𝑒𝑖− 𝑗− . See the
rightmost image in Fig. 4 for a schematic. We show in Supp. §5 that
these constraints preserve the foliation guarantees of [Mitra et al.
2024] ensuring that all level sets of the course stripes are helix-free.
The routing of the path is important, and we ask that it start

by passing through vertex 𝑗+ and end by passing through vertex
𝑖− . The remainder of the path is found through a custom-weighted
Dijkstra’s shortest path on the halfedges of the mesh.

𝐶𝑖 𝑗 = 1 + ∇ℎ⊥ ·
p𝑖 𝑗p𝑖 𝑗  (5)

These encourage movement from the positive singularity to the
negative singularity along their shared isoline, as described in §4.2
of Mitra et al. [2024]. Further commentary on the linear constraints
Eqs. (4a) - (4d), and (6) is provided in Supp. §2.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



6 • Mitra et al.

4.3.2 Termination and Integer Refinement. Upon completion of the
optimization we compare the objective values and terminate if
F (𝜎𝑠 ) > F (𝜎𝑠−1). As we greedily check potential edge-pair can-
didates and there are only a finite number of edges, termination
of our algorithm is guaranteed. Practically, we never get close to
exhausting all possibilities and terminate in ∼20-50 iterations. For
𝑠 = 0, we do not terminate.

If termination occurs, we must add a few topologically correlated
linear constraints and solve one last refinement optimization. In
particular, we must add integrability constraints along homology
generators to ensure a well-defined stripe pattern is used for knit
graph construction.∫

𝑔𝑙

𝜎 = k𝑔 𝑙 = 1, . . . , 2𝑔 + 𝑛bdy − 1 (6)

In the above, 𝑔 is the topological genus of𝑀 , and 𝑛bdy is the number
of boundary components, and the 𝑔𝑙 denote the homology genera-
tors of𝑀 . The homology generators are obtained with a standard
tree-cotree algorithm, as described in §4.1 of Mitra et al. [2024].
For efficiency, the entries of k𝑔 ∈ Z2𝑔+𝑛bdy−1 are estimated via

a simple path integral of 𝜎𝑐 or 𝜎𝑤 over the generators, followed
by a rounding to the closest integer. Empirically, we find that this
does well and avoids the explicit use of any integer variables in our
method. Lastly, we note that Eq. (6) barely affects local behavior of
𝜎 , so we do not enforce it when optimizing for iterates 𝜎𝑠 .

4.4 Singularity Placement
As described previously, we place sin-
gularities at regions of high (abso-
lute) curl. In particular, we use the
Whitney interpolant to produce a face-
based vector field 𝛿𝜎𝑠 and calculate
the per-vertex curl [de Goes et al. 2016;
Wardetzky 2007]:

[∇ × 𝛿𝜎𝑠 ]𝑖 =
1
𝐴𝑣𝑖

∑︁
𝑖 𝑗𝑘∈𝑁1 (𝑣𝑖 )

(𝛿𝜎𝑠 )𝑖 𝑗𝑘 · p𝑗𝑘 (7)

The above specifies the curl at vertex 𝑖 and captures the inte-
gral around the boundary of neighboring triangles (see inset);
𝐴𝑣𝑖 := 1

3
∑
𝑖 𝑗𝑘∈𝑁1 (𝑣𝑖 ) 𝐴𝑖 𝑗𝑘 denotes the area of the correspond-

ing 1-ring. As we are specifying singularities on edges, we av-
erage these values to edges to give a signal supported on edges:
[∇ × 𝛿𝜎𝑠 ]𝑖 𝑗 =

(
[∇ × 𝛿𝜎𝑠 ]𝑖 + [∇ × 𝛿𝜎𝑠 ] 𝑗

)
/2. We alter this signal

slightly to help satisfy singularity avoidance (denoted [∇ × 𝛿𝜎𝑠 ]∼),
but delay details to §4.4.1 for pedagogical reasons.

Course rows. For short row end placements, isolines of ℎ are
sampled at regular intervals based on the period 𝑃 of the desired
stripe pattern (the course height). In particular we sample 𝑁 =

1/𝑃 ∥∇ℎ∥avg isolines, where ∥∇ℎ∥avg denotes the area-weighted av-
erage of the time function norm. This achieves isolines that are
spaced by 𝑃 on average.
We denote 𝑇 to be the set of sampled isolines and 𝐸𝑡 to be the

set of edges that a particular isoline 𝑡 ∈ 𝑇 intersects. Then, a simple

Fig. 5. Curl signal of the course 1-form after inserting 𝑠 = 5 short
rows. Left: unaltered curl signal. Middle: an impulse function was sub-
tracted off, removing most of the compensatory behavior and providing
a better signal for the next singularity placement. Right: singularity
separation masking was applied, enforcing manufacturing and ren-
dering constraints by keeping short row ends, increases and decreases
away from each other.

approach would be to seek the isoline 𝑡max with max curl range:

𝑡max = argmax
𝑡 ∈𝑇

((
max
𝑒∈𝐸𝑡

[∇ × 𝛿𝜎𝑐,𝑠 ]∼𝑒
)
−
(
min
𝑒∈𝐸𝑡

[∇ × 𝛿𝜎𝑐,𝑠 ]∼𝑒
))

(8)

The max and min curl singular edges of 𝑡max are incorporated into
k𝑐
𝐵,𝑠

with a +1 and −1, respectively. In later iterations, we remove
𝑡max from consideration to help ensure short rows are not too close
to each other (part of singularity separation).
In actuality, we found it more effective to try the top 𝑛cand can-

didate isolines and stop when one of them improves the objective
during our iterate optimization. For most of the results in this paper,
we use 𝑛cand = 10. Note that in effect, this subsumes the termination
check of §4.3.2, but we present it as such for pedagogical simplicity.
Lastly, we actually consider 𝑇 as the set of connected components
of isolines, so that we are not prevented from placing singular pairs
on different tubes at the same isoline value.

Wale columns. For increases and decreases, we do not need to
restrict to sets of isolines, as there is no helix-free condition to sat-
isfy. Thus, the simplified strategy is to select the edge 𝑒max with
maximum absolute curl

��[∇ × 𝛿𝜎𝑤,𝑠 ]∼
��. 𝑒max is removed from con-

sideration for future iterations, again to help satisfy singularity
avoidance. As with the course pattern, we take the top 𝑛cand can-
didate edges and stop when one of them improves the objective
during our iterate optimization.

4.4.1 Local curl correction. When curl singularities are placed on
an edge, there is a high compensatory curl nearby, drowning out
the curl signal elsewhere. We correct for this local curl around
singularities with two processes. The first is a solve for an impulse
function of sorts, which approximates the local curl imparted by
singularity placement. Specifically, we solve for a 1-form on the lens

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



Curl Quantization for Automatic Placement of Knit Singularities • 7

complex 𝜏𝑠 with the following constrained quadratic problem.

min
𝜏𝑠 ∈R|�̃� |

∑︁
𝑡 ∈𝐹

𝐴𝑡 ∥(𝛿𝜏𝑠 )𝑡 ∥2 . (9a)

such that 𝑑Δ1 𝜏𝑠 = 0 (9b)

𝑑𝐵1 𝜏𝑠 = k𝐵,𝑠 (9c)
𝜏𝑠 |𝜕𝑀 = 0 (9d)

The solution captures the curl imparted by the current singular-
ity placement, only specifying boundary alignment and singularity
placement constraints. We subtract off ∇ × 𝛿𝜏𝑠 from ∇ × 𝛿𝜎𝑠 when
considering the curl for singularity placement. Fig. 5 shows these
results in a curl measure that no longer peaks solely in the neigh-
borhood of the singular edges, but is comparable over the mesh.
Additionally, we also want to avoid placements near the critical

(saddle) isolines of ℎ (simple splits/merges), and placements near
existing singularities (singularity separation). To force satisfaction
of these, we zero out the signal based on a geodesic distance estimate
calculated via the heat method [Crane et al. 2017]. Let 𝜌𝑠 : 𝑀 → R
denote a function which is 0 if we are within a distance 𝑑mask of
the critical isolines, the existing singularity placements given by
k𝐵,𝑠 , and (in the wale case) the course singularities given by k𝑐

𝐵
.

Ultimately, our altered curl signal is given by:

[∇ × 𝛿𝜎𝑠 ]∼𝑖 = 𝜌𝑠 (𝑣𝑖 ) ( [∇ × 𝛿𝜎𝑠 ]𝑖 − [∇ × 𝛿𝜏𝑠 ]𝑖 ) (10)

4.5 User Control
Our framework allows for some easily incorporated user control
over singularity placement, and we demonstrate some of these ca-
pabilities. First, as in Mitra et al. [2024, 2023], it is easy to place
individual singularities by initializing them in k𝐵,0. Secondly, align-
ment of courses and wales to particular paths may be achieved by
simple linear constraints and specification of the 𝑙 𝑗 in Eq. (4d). A
clear use case of this is in the cut-and-sew patch setting, where
designers often expect wale patterns to align with boundaries of the
patches, which we demonstrate in Fig. 9 left. Lastly, we demonstrate
the novel tool of singularity avoidance (Fig. 9) right implemented
via modification of Eq. (10). These may be done via hard constraints,
by modification of 𝜌𝑠 , or may be done in a soft fashion by adding
another factor 𝜌seam which is 1 near a user-designated seam and
decreases to a non-zero value, e.g. 1/2, over the rest of the mesh.
The latter option may be easily done with a shifted and scaled heat
diffusion kernel [Crane et al. 2017] and allows for singularity place-
ment away from the designated seam. This approach allows for far
more intuitive user-control compared to Mitra et al. [2024, 2023]. By
scaling the curl signal, we allow seam specification in a stroke-based
manner (Fig. 9, left) and region-based singularity avoidance (Fig. 9,
right). Mitra et al. [2024, 2023] would require tedious face-by-face
specification of these singularity positions and optimal choices are
often not clear. We infer these positions exactly.

5 Results
We solve the optimization problems using the vanilla Gurobi solver
[Gurobi Optimization, LLC 2022] on an M3 MacBook Pro with 32GB
of RAM. We validate our techniques through physical fabrication

Table 1. Runtime statistics and comparisons against Strategy 2 of Mitra
et al. [2023]. The Sock, Curved cylinder, and Cactus are models from their
work. Their method did not find any integer solution for Glove after 10
minutes, and does not handle the cut-and-sew setting (4-panel skirt, Pants).

Model #V #F Strategy 2 Ours Speed-up
Sock 279 538 21s 0.395s ∼53×

Curved cylinder 54 96 <5s 0.025s ∼182×
Cactus 391 736 35s 0.348s ∼100×
Glove 37493 74524 N/A 56s N/A
Dress 8634 16995 6min 11.521s ∼31×

4-panel skirt 1094 1936 N/A 0.597s N/A
Pants 1217 2046 N/A 0.526s N/A

using an industrial knitting machine and visual verification by ren-
dering yarn-level structures. Our highlighted results in Fig. 6 include
both intrinsic cut-and-sew patch designs and extrinsic 3D-model-
based geometries, and show that our method places singularities
in curl-informed regions and results in evenly-sized stitches. Edge
length error histograms for selected models showing comparable
performance to AutoKnit are in Supp. §3. Auxiliary results beyond
those in Fig. 6 and Fig. 7 are in Supp. §1.

Fabrication Results. We use Autoknit [Narayanan et al. 2018]
for knit scheduling. All samples were knitted on a Shima Seiki
SWG91N2 15-gauge v-bed knitting machine using 2/28NM rayon
yarn at a 40-stitch size at a rate of 0.6 m/s.

Rendering Results. Besides validating our results via machine knit-
ting, we also render several outputs with yarn-level details. Partic-
ularly, we convert the knit graph to a stitch mesh [Yuksel et al.
2012] as its dual representation. As each type of stitch mesh face
is embedded with a yarn-level template, we can generate the cor-
responding yarn structure and render with an offline path tracing
render. No yarn-based relaxation is done. We compare to a stitch
mesh derived from AutoKnit [Narayanan et al. 2018] and point out
surface artifacts that arise from the stitch meshes of Wu et al. [2018]
in Fig. 8. Our results are smoother and free of surface artifacts.

Runtimes. The cost of ourmethod is dominated by the constrained
quadratic problem solved for each singularity candidate, which
amounts to a linear solve that scales with the number of edges.
Possible performance improvements include preconditioning the
linear solver (since the system remains mostly the same through
iterations) and parallelizing the checking of singular edge candidates.
Table 1 details the run times and compares against Mitra et al. [2023].

6 conclusion
This works presents an iterative, curl-informed method for auto-
matic placement of knit singularities, improving the pipeline of
Mitra et al. [2024, 2023]. This formulation avoids the need for an ex-
pensive mixed-integer solve, any manual correction of placements,
or singularity matching in post-processing. Our smooth knit graphs
are suitable for both machine-knitting and yarn-level rendering. We
introduce linear constraints to satisfy all structural manufacturing
constraints. Additionally, our method allows a high degree of user
control as shown in Fig. 9 which are not offered by Narayanan et al.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



8 • Mitra et al.

[2018]. We demonstrate our method in both the 3D and the 2D
cut-and-sew setting on a variety of diverse models.

Limitations & FutureWork. Befitting the use of a greedy algorithm,
our method does not incorporate underlying symmetry information.
Developing a more global, non-iterative approach to singularity
placement, while maintaining structural and user constraints, is a
natural extension. Additionally, to ease specification of non-helicing
path constraints, we scale mesh resolution to have an average edge
length less than the desired course and wale periods. A deeper
analysis of the local foliation structure near singular edges may
allow us to coarsen the mesh significantly and improve performance.
As with most knitting works, our time function is currently naively
computed from user-specified start and end constraints. This may
lead to poor behavior on topologically complex models as seen in
Fig. 8. More sophisticated time function optimization is another
natural direction to pursue.

Acknowledgments
We acknowledge the Belgian American Educational Foundation,
Wallonie-Bruxelles International and the NSF (Grant No. 2341880).

References
Lea Albaugh, Scott Hudson, and Lining Yao. 2019. Digital Fabrication of Soft Actuated

Objects by Machine Knitting. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for
Computing Machinery, New York, NY, USA, 1–13.

Lea Albaugh, James McCann, Scott E. Hudson, and Lining Yao. 2021. Engineering
Multifunctional Spacer Fabrics Through Machine Knitting. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). Association
for Computing Machinery, New York, NY, USA, Article 498, 12 pages.

Mirela Ben-Chen, Craig Gotsman, and Guy Bunin. 2008. Conformal Flattening by
Curvature Prescription and Metric Scaling. Computer Graphics Forum 27, 2 (2008),
449–458.

Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013. Digital
geometry processing with discrete exterior calculus. InACM SIGGRAPH 2013 Courses
(Anaheim, California) (SIGGRAPH ’13). Association for Computing Machinery, New
York, NY, USA, Article 7, 126 pages.

Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial Connections on
Discrete Surfaces. Computer Graphics Forum 29, 5 (2010), 1525–1533.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2017. The Heat Method for
Distance Computation. Commun. ACM 60, 11 (Oct. 2017), 90–99.

Fernando de Goes, Mathieu Desbrun, and Yiying Tong. 2016. Vector field processing on
triangle meshes. In ACM SIGGRAPH 2016 Courses (Anaheim, California) (SIGGRAPH
’16). Association for ComputingMachinery, New York, NY, USA, Article 27, 49 pages.

Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual.
Megan Hofmann, Lea Albaugh, Tongyan Wang, Jennifer Mankoff, and Scott E Hudson.

2023. KnitScript: A Domain-Specific Scripting Language for Advanced Machine
Knitting. In Proceedings of the 36th Annual ACM Symposium on User Interface Software
and Technology (San Francisco, CA, USA) (UIST ’23). Association for Computing
Machinery, New York, NY, USA, Article 21, 21 pages.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
Field-Aligned Meshes. ACM Trans. Graph. 34, 6 (Nov. 2015).

Benjamin Jones, Yuxuan Mei, Haisen Zhao, Taylor Gotfrid, Jennifer Mankoff, and
Adriana Schulz. 2021. Computational Design of Knit Templates. ACM Trans. Graph.
41, 2, Article 16 (Dec. 2021), 16 pages.

Alexandre Kaspar, Liane Makatura, and Wojciech Matusik. 2019. Knitting Skeletons: A
Computer-Aided Design Tool for Shaping and Patterning of Knitted Garments. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Tech-
nology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery,
New York, NY, USA, 53–65.

Alexandre Kaspar, Kui Wu, Yiyue Luo, Liane Makatura, and Wojciech Matusik. 2021.
Knit sketching: from cut & sew patterns to machine-knit garments. ACM Trans.
Graph. 40, 4, Article 63 (July 2021), 15 pages.

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe patterns
on surfaces. ACM Trans. Graph. 34, 4, Article 39 (July 2015), 11 pages.

Maria Korosteleva and Olga Sorkine-Hornung. 2023. GarmentCode: Programming
Parametric Sewing Patterns. ACM Trans. Graph. 42, 6, Article 199 (2023), 15 pages.

Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein,
and James Mccann. 2023. Semantics and Scheduling for Machine Knitting Compilers.
ACM Trans. Graph. 42, 4, Article 143 (July 2023), 26 pages.

Jenny Han Lin, Yuka Ikarashi, Gilbert Louis Bernstein, and James McCann. 2024. UFO
Instruction Graphs Are Machine Knittable. ACM Trans. Graph. 43, 6, Article 206
(Nov. 2024), 22 pages.

Zishun Liu, Xingjian Han, Yuchen Zhang, Xiangjia Chen, Yu-Kun Lai, Eugeni L.
Doubrovski, Emily Whiting, and Charlie C. L. Wang. 2021. Knitting 4D garments
with elasticity controlled for body motion. ACM Trans. Graph. 40, 4, Article 62 (July
2021), 16 pages.

Yiyue Luo, Kui Wu, Tomás Palacios, and Wojciech Matusik. 2021. KnitUI: Fabricating
Interactive and Sensing Textiles with Machine Knitting. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).
Association for Computing Machinery, New York, NY, USA, Article 668, 12 pages.

Yiyue Luo, Kui Wu, Andrew Spielberg, Michael Foshey, Daniela Rus, Tomás Palacios,
and Wojciech Matusik. 2022. Digital Fabrication of Pneumatic Actuators with
Integrated Sensing by Machine Knitting. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association
for Computing Machinery, New York, NY, USA, Article 175, 13 pages.

James McCann, Lea Albaugh, Vidya Narayanan, April Grow,Wojciech Matusik, Jennifer
Mankoff, and Jessica Hodgins. 2016. A compiler for 3D machine knitting. ACM
Trans. Graph. 35, 4, Article 49 (July 2016), 11 pages.

Rahul Mitra, Erick Jimenez Berumen, Megan Hofmann, and Edward Chien. 2024. Sin-
gular Foliations for Knit Graph Design. In ACM SIGGRAPH 2024 Conference Papers
(Denver, CO, USA) (SIGGRAPH ’24). Association for Computing Machinery, New
York, NY, USA, Article 38, 11 pages.

Rahul Mitra, Liane Makatura, Emily Whiting, and Edward Chien. 2023. Helix-Free
Stripes for Knit Graph Design. In ACM SIGGRAPH 2023 Conference Proceedings (Los
Angeles, CA, USA) (SIGGRAPH ’23). Association for Computing Machinery, New
York, NY, USA, Article 75, 9 pages.

Georges Nader, Yu Han Quek, Pei Zhi Chia, Oliver Weeger, and Sai-Kit Yeung. 2021.
KnitKit: a flexible system for machine knitting of customizable textiles. ACM Trans.
Graph. 40, 4, Article 64 (July 2021), 16 pages.

Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James Mccann.
2018. Automatic Machine Knitting of 3D Meshes. ACM Trans. Graph. 37, 3, Article
35 (Aug. 2018), 15 pages.

Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual knitting
machine programming. ACM Trans. Graph. 38, 4, Article 63 (July 2019), 13 pages.

Yuta Noma, Nobuyuki Umetani, and Yoshihiro Kawahara. 2022. Fast Editing of Singu-
larities in Field-Aligned Stripe Patterns. In SIGGRAPH Asia 2022 Conference Papers
(Daegu, Republic of Korea) (SA ’22). Association for Computing Machinery, New
York, NY, USA, Article 37, 8 pages.

Shahida Sharmin and Sean Ahlquist. 2016. Knit Architecture: Exploration of Hybrid
Textile Composites Through the Activation of Integrated Material Behavior.

Yousuf Soliman, Albert Chern, Olga Diamanti, Felix Knöppel, Ulrich Pinkall, and Peter
Schröder. 2021. Constrained willmore surfaces. ACM Trans. Graph. 40, 4 (2021),
1–17.

Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek. 2024a. What’s
in a cable? Abstracting Knitting Design Elements with Blended Raster/Vector Prim-
itives. In Proceedings of the 37th Annual ACM Symposium on User Interface Software
and Technology (Pittsburgh, PA, USA) (UIST ’24). Association for Computing Ma-
chinery, New York, NY, USA, Article 62, 20 pages.

Hannah Twigg-Smith, Emily Whiting, and Nadya Peek. 2024b. KnitScape: Compu-
tational Design and Yarn-Level Simulation of Slip and Tuck Colorwork Knitting
Patterns. In Proceedings of the 2024 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New
York, NY, USA, Article 860, 20 pages.

Max Wardetzky. 2007. Discrete Differential Operators on Polyhedral Surfaces - Conver-
gence and Approximation. Dissertation.

Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018. Stitch
meshing. ACM Trans. Graph. 37, 4, Article 130 (July 2018), 14 pages.

Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable stitch meshes. ACM Trans.
Graph. 38, 1 (2019), 1–13.

Kui Wu, Marco Tarini, Cem Yuksel, James McCann, and Xifeng Gao. 2022. Wearable 3D
Machine Knitting: Automatic Generation of Shaped Knit Sheets to Cover Real-World
Objects. IEEE Transactions on Visualization and Computer Graphics 28, 9 (2022).

Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch
meshes for modeling knitted clothing with yarn-level detail. ACM Trans. Graph. 31,
4, Article 37 (July 2012), 12 pages.

Amy Zhu, Yuxuan Mei, Benjamin Jones, Zachary Tatlock, and Adriana Schulz. 2024.
Computational Illusion Knitting. ACM Trans. Graph. 43, 4, Article 152 (July 2024),
13 pages.

Lara Zlokapa, Yiyue Luo, Jie Xu, Michael Foshey, Kui Wu, Pulkit Agrawal, and Wo-
jciech Matusik. 2022. An Integrated Design Pipeline for Tactile Sensing Robotic
Manipulators. In 2022 International Conference on Robotics and Automation (ICRA)
(Philadelphia, PA, USA). IEEE Press, New York, NY, USA, 3136–3142.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



Curl Quantization for Automatic Placement of Knit Singularities • 9

Fig. 6. Highlighted results, showing time functions, curl signals, knit graphs showing singularity placements, renders, and stuffed fabricated
results (with 0.75 inch coin or dressed on 8 inch tall mannequin). 1. Sock. 2. Dress. 3. Cactus. 4. Pipes. 5. Pants. 6. Two-panel skirt. 7. Glove. Note
that the leftward bend is a common tension artifact rather than a topological effect. Sock, skirt and pants fabricated at two sizes.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.



10 • Mitra et al.

Fig. 7. Cut & Sew T-shirt model with six-panels. From left to right: Time function. Wale curl signal. Middle top: Decrease placements of our
method. We schedule the associated graph using a modified version of Autoknit’s [Narayanan et al. 2018] scheduler, resulting in unsafe machine
operations (original scheduler was thrashing on this intput). Due to the unsafe operations, we did not proceed with machine-knitting (dat file
presented in supplementary). Middle bottom: We cap the number of inserted wale decreases. The associated graph and knitted result presents much
less shaping but completes on the scheduler.

Fig. 8. Rendering results. The stitch mesh is computed as the dual of the knit graph for template-based yarn-level rendering. Left: Stitch mesh
obtained from Autoknit [Narayanan et al. 2018] has irregular columns and rows which are clearly visible in the render. Middle: Our stitch mesh
presents far smoother rows and columns making it suitable for yarn-level rendering. Right: Stitch meshes from Wu et al. [2018] (with permission
from author) present surface artifacts due to inconsistently oriented stitch faces and local remeshing. Our stitch meshes are guaranteed to be
consistently oriented due to the machine-knittability of the produced knit graphs. Non-uniform stitches on the arms of the model arises due to poor
time function choice on this model. Other knitting works also suffer from this problem, making the fabrication of complex topological models
challenging. We leave time function optimization to future work.

Fig. 9. Our approach allows the incorporation of intuitive user constraints. Left: (a) Without any edge alignment constraints, the wale columns
of the knit graph flow arbitrarily between panels in the cut & sew setting. (b) Our method allows for the alignment of wale columns to patch
boundaries at stitched seams. (c) Our method also allows a user to place a seam (series of decreases) along the highlighted region. Right: (a) A
geometrically informed solution from our algorithm would automatically place short rows along the sides of the model. (b) Our masking procedure
allows a user to remove singularities from appearing in a particular region of the graph, allowing for color-work or texturing.

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.


	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Method
	4.1 A discrete curl quantization problem
	4.2 An iterative framework
	4.3 Iterate Optimization & Potential Termination
	4.4 Singularity Placement
	4.5 User Control

	5 Results
	6 conclusion
	Acknowledgments
	References

