

THE PREMIER CONFERENCE & EXHIBITION ON COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

Helix-Free Stripes for Knit Graph Design

Rahul Mitra¹, Liane Makatura², Emily Whiting¹, Edward Chien¹

BOSTON UNIVERSITY

Massachusetts Institute of Technology

Goal: Given a 3D mesh, generate a **helix-free** knit graph over it

Must be helix-free!

¹ from Visual Knitting Machine Programming (2019) ²from Knit Sketching: from Cut and Sew Patterns to Machine-Knit Garments (2021)

Positioning our work

- Our goal (similar to Autoknit [Naryanan et al. 2018]):
 - Automatic generation of machine-knittable graphs from input triangle meshes
 - Precise control over helices
- 1-form-based framework produces more globally-informed stitch patterns

• Optimization allows incorporation of linear user-specified constraints

Positioning our work

- We follow a stripes-based methodology
 - Evenly-spaced stripes ↔ evenly-spaced course rows and wale columns

- KnitKit [Nader et al. 2021] is only other work to consider this
 - They intersect stripes produced by [Knoppel et al. 2015], which often contain helices
 - Removal attempted via quad mesh operations [Bommes et al. 2011], but no guarantees
 - Our constraints can be used to guarantee helix removal

$\rightarrow \sigma$: The Stripe Texturing Function

 σ_{ki}

• 1 form $\sigma: E \to \mathbb{R}$ a discretization of a vector field

 $\langle \sigma_{jk} \rangle$

- If $(d_1\sigma)_m = 0$ vector field is integrable to a local linear function \circ Striping red if pixel value $\in (0,\pi) \pmod{2\pi}$, pink if value $\in (\pi,2\pi) \pmod{2\pi}$
- If $(d_1\sigma)_m = (2\pi)k, k \in \mathbb{Z}^{|F|}$, vector field non-integrable

 σ_{ij}

- \circ Can still get local function from triangle to $\ S^1$
- Allows for global striping

•

\rightarrow Optimizing for σ directly

- We optimize directly for $\,\,\sigma\,\,$
 - [Noma et al. 2022] optimize in the space of 1-forms but do not explore knitting applications

- The gradient of a harmonic interpolation $h: V \to \mathbb{R} \in [0, 1]$ guides the 1-form optimization
 - Linear constraints achieve all the desiderata

$$\underbrace{||W(\sigma_c - \omega_c)||^2}_{\text{Quadratic minimization objective for course rows}}$$

$$(\omega_c)_{ij} = \underbrace{\frac{1}{2} \left(\frac{(\nabla h)_l}{||(\nabla h)_l||} + \frac{(\nabla h)_r}{||(\nabla h)_r||} \right) \cdot \mathbf{e}_{ij}}_{\text{integral of normalized } \nabla h \text{ along } e_{ii}}$$

Stripe irregularity/short row placement

Direct use of [Knoppel et al. 2015]

Tightness to boundaries through stripe alignment

$$\sigma_c|_{\partial M} = 0$$

 $(d_1\sigma)_m = (2\pi)k, k \in \mathbb{Z}^{|F|}$

This level of granular control not achievable with linear constraints in [Knoppel et al. 2015]

Optimization problems and strategies

Thanks to Yuxuan Mei in Adriana Schulz's group at UW for help with fabricating!

- Presented a **stripes-based framework** for global stitch structure specification, operating in the space of **discrete 1-forms**
- Results in quadratic mixed-integer optimization with **linear** constraints for:
 - Removal of helices
 - Placement of stitch irregularities
 - Alignment of course rows and wale columns to feature curves
- Constraints are directly incorporated into a **global structure optimization**
 - Most previous works incorporate user constraints via post-processing

THE PREMIER CONFERENCE & EXHIBITION ON COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

Thank you for listening!

(Slides that follow are for clarifying question)

Why do knit graphs need to be helix-free?

- Knitting schedulers [Naryanan et al. 2018] trace the graph in a natural spiralling/helical pattern
 - Helices in the generated graph would result in an incorrect amount (i.e., too much) helicing

¹from Automatic Machine Knitting of 3D Meshes(2018)

Level Set (path integral constraints)

- Can specify path integral of $\,\sigma\,$ along a specified polyline $\,\gamma\,$
 - Constrains same stripe level set to pass through polyline endpoints
 - Non-trivial constraints applied to the wale stripes to ensure stripes "close up" on the boundary

$$\int_{\gamma} \sigma = \sum_{i=0}^{n-1} -s_i^{i+1} \sigma_{e_i} r_i^{i+1} + s_{i+1}^i \sigma_{e_{i+1}} r_{i+1}^i = C, C \in \mathbb{R}$$

• When C = 0 and γ is a closed loop of mesh edges, ensures that a stripe level set does not cross the loop without returning back to its side of origin i.e., helix removal

Constraints in the wale direction

$$(\omega_w)_{ij} = \frac{1}{2} \left(\frac{(\nabla h)_l^T}{||(\nabla h)_l^T||} + \frac{(\nabla h)_r^T}{||(\nabla h)_r^T||} \right) \cdot \mathbf{e}_{ij}$$

$$\int_{(\partial M)^i} \sigma_w = (2\pi) k^i$$
 Specified on N-1 boundaries

- Need to only consider irregularity placement and possible stripe alignment constraints
 - No helices in the wale direction

Model	Strategy	#V	#F	# Int.	MIP Solve
				Vars.	Time, s
Curved	S2	54	96	97	< 5
Cylinder (Fig. 7)					
Hemisphere	S2	224	384	385	40
(Fig. 9(e))					
Sock (Fig. 1)	S2	279	538	98	21
Sock	S1	279	538	2	< 1
(Fig. 9(d))					
Cylinder	S1	270	580	3	< 1
(Fig. 6, middle)					
Cactus	S2	391	736	738	35
(Fig. 9(c))					
Bunny	S2	2669	5228	5230	287
(Fig. 4, right)					

Table 1: Run time statistics.

