
Helix-Free Stripes for Knit Graph Design
Rahul Mitra

rahulm@bu.edu

Boston University

Boston, MA, USA

Liane Makatura

makatura@mit.edu

Massachusetts Institute of Technology

Cambridge, MA, USA

Emily Whiting

whiting@bu.edu

Boston University

Boston, MA, USA

Edward Chien

edchien@bu.edu

Boston University

Boston, MA, USA

Figure 1: We generate a knit graph for a sock model by composing two orthogonal stripe patterns from mixed-integer solves.
(Left) Naive boundary-aligned course stripes frequently contain helices, highlighted in green. This helix persists in the knit
graph, which renders it unknittable. We introduce a helix elimination constraint along the blue cycle. (Right) After solving
subject to this constraint, our course stripes are helix-free, which produces a knittable graph.

ABSTRACT
The problem of placing evenly-spaced stripes on a triangular mesh

mirrors that of having evenly-spaced course rows and wale columns

in a knit graph for a given geometry. This work presents strategies

for producing helix-free stripe patterns and traces them to produce

helix-free knit graphs suitable for machine knitting. We optimize di-

rectly for the discrete differential (1-form) of the stripe texture func-

tion, i.e., the spinning form, and demonstrate the knitting-specific

advantages of this framework. In particular, we note how simple

linear constraints allow us to place stitch irregularities, align course

rows and wale columns to boundary/feature curves, and eliminate

helical stripes. Two mixed-integer optimization strategies using

these constraints are presented and applied to several mesh models.

The results are smooth, globally-informed, helix-free stripe patterns

that we trace to produce machine-knittable graphs. We further pro-

vide an explicit characterization of helical stripes and a theoretical

analysis of their elimination constraints.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0159-7/23/08. . . $15.00

https://doi.org/10.1145/3588432.3591564

CCS CONCEPTS
• Computing methodologies → Shape analysis; • Applied
computing → Computer-aided design.

KEYWORDS
computational knitting, stripe texturing

ACM Reference Format:
RahulMitra, LianeMakatura, EmilyWhiting, and Edward Chien. 2023. Helix-

Free Stripes for Knit Graph Design. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Conference Proceedings (SIG-
GRAPH ’23 Conference Proceedings), August 06–10, 2023, Los Angeles, CA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3588432.3591564

1 INTRODUCTION
The growing availability of computational knitting machines has

spawned much recent work on algorithms and frameworks to assist

users in designing stitch patterns for complex geometries. The

seminal work of AutoKnit [Narayanan et al. 2018] first tackled the

problem of seamless whole-garment computational knitting from

arbitrary mesh input. The authors abstracted stitch patterns to the

important notion of knit graphs, and various formal constraints

were established to characterize machine-knittability. Key among

these was the helix-free condition, specifying that course rows of
vertices should not form spirals. While a robust method for knit

graph generation was produced, its use of an iterative, local process

based on geodesic distance estimates may produce knit patterns

https://doi.org/10.1145/3588432.3591564
https://doi.org/10.1145/3588432.3591564

SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Rahul Mitra, Liane Makatura, Emily Whiting, and Edward Chien

Figure 2: Level set tracing (right) produces a smoother
globally-informed knit graph compared to [Narayanan et al.
2018] (left). See wale columns.

that are less smooth and globally-informed than those produced

with our framework (see Fig. 2). Furthermore, it is not easy to

achieve any user control over the stitch pattern in their setting.

The KnitKit pipeline of Nader et al. [2021] recognized the po-

tential of stripe generation algorithms, as evenly-spaced stripes

are analogous to evenly-spaced course rows and wale columns of

a knitting pattern. They use the method of Knöppel et al. [2015],

which performs a global convex solve for a complex-valued function

over the surface. They then infer a discrete spinning (1-)form from

this function, and the form specifies the stripe pattern. While this

method is efficient and produces global, geometrically-informed

stripe patterns, it does not guarantee that they will be helix-free and

that they will align to mesh boundaries. Nader et al. [2021] use mesh

modification operators from the quad meshing literature [Bommes

et al. 2011] to remove helices, but these are not guaranteed to work.

In this work, we instead optimize for the spinning form directly

in the space of discrete 1-forms on a given triangle mesh. This

setting allows the user to easily specify placement of short row

ends and increases/decreases, align course rows and wale columns

to specified polylines, and to eliminate helical stripes through a

variety of linear constraints. Recent work from Noma et al. [2022],

considered this framework for interactive editing of a given stripe

pattern, but did not consider its use for machine knitting. We utilize

and generalize their constraints, identifying implications for knit

structure. Amongst these constraints is a novel helix elimination
constraint that removes identified helical stripes in a given pattern.

Using these constraints, we also outline two optimization strate-

gies for obtaining helix-free stripe patterns. The first assumes fixed

singular triangle positions and indices and pairs them with level

set or stripe alignment constraints. This results in non-helical short

rows between pairs of singular triangles. The second aims for it-

erative automatic placement of geometrically-informed singular

triangles, using helix elimination constraints to prevent helices

that have arisen in previous iterations. Both strategies result in

quadratic mixed-integer problems, with the former having few inte-

ger variables and being solved at interactive rates, while the latter

produces reasonable approximate solutions on longer timescales.

We demonstrate these strategies on several mesh models, and

the stripe patterns are used to produce machine-knittable graphs.

The graphs are traced and scheduled with the AutoKnit pipeline,

and .dat files and knits may be seen amongst our results. Lastly, we

provide several theoretical results that are briefly mentioned below.

In summary, our main contributions are:

• A novel framework for stripes-based knit graph construc-

tion, leveraging optimization in the space of discrete 1-forms.

This allows for: (i) elimination of helical stripes with lin-

ear constraints, (ii) precise placement of short rows and

increases/decreases, (iii) smoother globally-informed stitch

patterns, and (iv) alignment of courses and rows to bound-

aries/feature curves.

• A theoretical analysis of helices and constraints, showing

that: (i) level set constraints are equivalent on homologous

curves, (ii) helix elimination constraints have practical guar-

antees, (iii) a rigorous notion of course helices requires wale

columns, and (iv) there are extensions of many linear con-

straints of [Noma et al. 2022] to the interior of triangles.

2 BACKGROUND & RELATEDWORK
In this section, we review concepts from related work, and establish

notation and background. Let us first list some more distantly-

related works that have inspired us. Many of these, e.g., [Jones et al.

2022; Kaspar et al. 2019, 2021; Narayanan et al. 2019] have impres-

sive semi-automatic workflows that allow designers to vary seam

layouts, use different stitch types, and perform complex colorwork

and knit texturing. Others are targeted specifically at producing

hand-knittable output, e.g., [Igarashi et al. 2008; Wu et al. 2019],

or output that is meant just for rendering [Wu et al. 2018; Yuksel

et al. 2012]. Lastly, the work of Tricard et al. [2020] applied texture

parameterization techniques to a different application: physical

engineering of 3D-printed microstructures.

The majority of the knitting works above generate geometrically-

informed stitch patterns by leveraging two sources of information:

a combination of time function level sets and geodesic distance

estimates, or quad meshing algorithms. Unlike these works, we aim

to leverage algorithms for producing stripe patterns, as was done

by [Nader et al. 2021], and tackle the specific problem of ensuring

helix-free knit graphs. Furthermore, we restrict ourselves to the

case of seamless whole-garment knitting, done “in-the-round”, and

with a single jersey stitch pattern. While not as comprehensive as

some of the more complex workflows above, we believe that our

framework and its insights could prove useful in these pipelines.

2.1 Helix-free Knit Graphs
For this work, we follow AutoKnit [Narayanan et al. 2018] and use

knit graphs to represent our knit structure. If a primer on basic

knitting concepts (courses/wales, short rows, increases/decreases,

knit graphs) is needed, we provide one in supplementary §1.

Given a knit graph, AutoKnit [Narayanan et al. 2018] traces it
to produce a final knit structure and yarn path, and a scheduler

compilesmachine knitting instructions. For successful tracing, there

are several properties that the knit graph must satisfy. We refer the

reader to the paper for a list of these constraints, but describe here

the most complex requirement: the helix-free property.

Helix-Free Stripes for Knit Graph Design SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

Within the knit graph, sets of nodes joined by

course edges are course rows, and a graph is helix-
free if there are no sequence of wale edges be-

tween any two nodes in the same course row. This

is schematically depicted in the inset figure from

[Narayanan et al. 2018] (blue row, top, is helical).

This may seem to contradict the fact that knitting

“in-the-round” produces a helical yarn path, but

the tracing procedure of AutoKnit determines the

spiraling in the final stitch structure.

For construction of the knit graph, a time func-

tion ℎ : 𝑀 → [0, 1] over the mesh is used to

specify the direction of knitting and the rough

alignment of course rows. This function is taken

as the harmonic interpolation of boundary values

set to 0 and 1 on certain boundary components.

For later discussion, let us use (𝜕𝑀)0 = ⊔𝑁0

𝑖=1
(𝜕𝑀)𝑖

0

and (𝜕𝑀)1 = ⊔𝑁1

𝑖=1
(𝜕𝑀)𝑖

1
to label those boundaries

and components on which the value is set to 0 and 1, respectively.

𝑁 = 𝑁0 + 𝑁1 denotes the total number of boundary components.

An example is in the inset figure. Using this time function, their

construction procedure cycles through steps of geodesic distance

estimation, sampling, and node linking via optimization. While

effective and robust, this approach is not globally-informed and

does not allow for user input in design of the knit graph.

2.2 Stripes For Knitting
As noted in the introduction, the recent KnitKit work from Nader

et al. [2021] was first to leverage stripe patterning methods for

stitch planning. In particular, they use the method of [Knöppel et al.

2015] to generate evenly-spaced stripe patterns guided by a vector

field. An example output is shown in Figure 4. Placing course rows

along the red stripes clearly suggests a sensible stitch pattern. As

such, Nader et al. [2021] use two orthogonal stripe patterns to place

course rows and wale columns.

2.2.1 Spinning Form. The method of Knöppel et al. [2015] opti-

mizes for a complex function over a triangular mesh 𝜓 : 𝑀 → C,
and uses arg𝜓 (the angle of𝜓) as a stripe texture coordinate. E.g.,

for alternating red-and-pink stripes, the surface color is red when

arg𝜓 ∈ (0, 𝜋)+2𝜋𝑘, 𝑘 ∈ Z and pinkwhen arg𝜓 ∈ (𝜋, 2𝜋)+2𝜋𝑘, 𝑘 ∈
Z. The objective term takes an input vector field that ∇(arg𝜓) tries
to match over the mesh. We refer the reader to [Knöppel et al. 2015]

for further details on the optimization.

To texture the mesh with stripes, the resultant𝜓 is used to infer

a differential 1-form called the spinning form. These objects are

represented in the setting of discrete differential geometry [Crane

et al. 2013], and we provide a brief primer on discrete 𝑘-forms and

their exterior derivatives 𝑑0 and 𝑑1 in supplementary §2, if needed.

In particular,𝜓 is discretized as a function over the mesh vertices

𝜓 : 𝑉 → R, and the spinning form is a discrete 1-form on the mesh

edges 𝜎 : 𝐸 → R. On an oriented edge 𝑒 between vertices 𝑖 and 𝑗 ,

𝜎𝑒 = 𝜎𝑖 𝑗 represents the estimated change in arg𝜓 over that edge.

Note that 𝜎 𝑗𝑖 = −𝜎𝑖 𝑗 (for 𝜎 to be well-defined).

On most faces, away from the zeros of𝜓 , arg𝜓 can be continu-

ously extended onto the face, and evenly-spaced stripes with no

Figure 3: Left: an example of the stripe texture function on a
singular triangle, with periodic level sets illustrated. Right:
the resulting stripe pattern. The stripe index is -1, indicating
that one stripe ends on this face.

irregularities result. On faces where𝜓 vanishes, arg𝜓 cannot be ex-

tended continuously, and an interpolant that mimics the argument

function is used. The resulting texture shows that stripes are “born”

or “die” on these faces, and are analogous to short row ends or in-

creases/decreases in a stitch structure. An illustration of stripes and

level sets on such a triangle is shown in Fig. 3. For completeness,

we reproduce the interpolant in §3 of the supplementary.

More precisely, (𝑑1𝜎)𝑚 = 2𝜋𝑘𝑚 for some 𝑘𝑚 ∈ Z on each tri-

angle𝑚 in the mesh. The cases above, when arg𝜓 does and does

not extend continuously, correspond to 𝑘𝑚 = 0 and 𝑘𝑚 ≠ 0, respec-

tively. In the latter case, we refer to𝑚 as a singular triangle, and
𝑘𝑚 as the stripe index. Let 𝐾 ⊂ 𝐹 to denote the subset of singular

triangles in the set of mesh faces. The stripe index on a triangle

denotes how many stripes will be created or destroyed on that face.

Our framework may be viewed as an attempt to optimize for the

spinning form directly, instead of inferring it from the optimized𝜓

as done in [Knöppel et al. 2015]. This optimization setting allows us

closer control with simple linear constraints. As done in [Knöppel

et al. 2015], we also allow for varying stripe width by replacing 2𝜋

with a user-specified stripe period, denoted 𝑃 (stripe width is 𝑃/2).

2.2.2 Knittability Issues. There is a key complication in the direct

use of [Knöppel et al. 2015]: the stripes produced are not helix-free,

and there is no simple way to modify the underlying optimization

problem to achieve this. Such a helix is highlighted in Fig. 4. Nader

et al. [2021] use the mesh modification operators of [Bommes et al.

2011] to try and fix these defects, but details are not given. Moreover,

in the quad-meshing setting, where these operators were initially

defined, there is no guarantee on elimination of all helices.

Fig. 4 also highlights the fact that direct use of [Knöppel et al.

2015] may lead to poor stripe (and thus course row) behavior at the

boundaries. In particular, stripes may not align well to the mesh

boundary, or be tight to any/all boundaries.

2.3 Fast Stripe Editing
A closely related work is the recent [Noma et al. 2022]. The au-

thors also optimize for the spinning form directly, but instead apply

their method to two other fabrication methods: wireframe struc-

tures and spiral design for developable surfaces. Several constraints

are constructed to control the resulting stripe pattern, including

specification of indices on singular triangles, and constraints along

polyline paths in the mesh. In §3.2, we generalize and discuss these

SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Rahul Mitra, Liane Makatura, Emily Whiting, and Edward Chien

constraints in the knitting context. Primarily, we note that their

approach does not reference or deal with helical stripes. We also

extend many of their constraints to allow for polyline endpoints

interior to triangles (§8, §9 of the supplementary).

For later discussion, we recall and augment their path notation

in Fig. 5. A polyline is a path on a triangular mesh 𝛾 : [0, 1] → 𝑀

that is piecewise linear on each triangular face. Two examples are

shown in Fig. 5. As can be seen, we additionally consider closed

paths where 𝛾 (0) = 𝑝0 = 𝛾 (1) = 𝑝𝑛 that we denote cycles.
Lastly, we recall Thm. 3.1 from [Noma et al. 2022], a useful index

formula, in our notation and discrete setting:

Theorem 3.1 ([Noma et al. 2022]). Given a discrete 1-form 𝜎

on an (orientable) triangular mesh 𝑀 , the set of counterclockwise
boundary loops (𝜕𝑀)0 and (𝜕𝑀)1, and the set of singular triangles
𝐾 , the following holds:∑︁

𝑚∈𝐾
2𝜋𝑘𝑚 +

𝑁0∑︁
𝑖=1

∫
(𝜕𝑀)𝑖

0

𝜎 +
𝑁1∑︁
𝑖=1

∫
(𝜕𝑀)𝑖

1

𝜎 = 0 (1)

The boundary integrals in the above theorem are defined as

oriented sums of 1-form values:∫
(𝜕𝑀)𝑖∗

𝜎 B
∑︁

𝑖 𝑗∈ (𝜕𝑀)𝑖∗

𝜎𝑖 𝑗 , (2)

where the “counterclockwise” boundary orientations are the stan-

dard induced orientations (keep𝑀 to the left as you traverse with

head oriented along outward normal). More generally, we define

integrals of 1-forms along sequences of mesh edges as analogous

oriented sums.

2.4 Homologous Paths
We briefly mention some definitions and facts

from simplicial homology that will be necessary

for the coming discussion. More complete expo-

sitions may be found elsewhere [Hatcher 2000] if

desired. First, we note the definition of homologous

curves. For simplicity, we only consider polylines

whose sequence of vertices consist of mesh ver-

tices: 𝑝0 = 𝑣0, . . . , 𝑝𝑛 = 𝑣𝑛 joined by mesh edges.

Figure 4: Potential knittability issues with direct use of
[Knöppel et al. 2015], as done in [Nader et al. 2021] (left):
helical stripes (in yellow, inset), poor boundary alignment
(insets) and stripes not tight to boundary (insets). We can fix
these with linear constraints and still obtain a reasonable
global stripe pattern (right). Both patterning algorithms use
the gradient of the time function as a guiding vector field.

Figure 5: Polyline notation. Inspired by Fig. 1 from [Noma
et al. 2022] supplementary. 𝑝𝑖 is a point on an edge 𝑒𝑖 that
polyline 𝛾 passes through. 𝑣𝑖,𝑖+1 denotes the vertex shared by
𝑒𝑖 and 𝑒𝑖+1, while 𝑣𝑖+1

𝑖
and 𝑣𝑖

𝑖+1 denote the other vertices in the
shared triangle. 𝑟 𝑖+1

𝑖
/𝑟 𝑖
𝑖+1 denote the barycentric coordinates

of 𝑝𝑖/𝑝𝑖+1 associated with 𝑣𝑖+1
𝑖

/𝑣𝑖
𝑖+1, respectively. 𝑠

𝑖+1
𝑖

/𝑠𝑖
𝑖+1 are

sign terms that are +1 if the canonical orientation of 𝑒𝑖/𝑒𝑖+1
agrees with the direction from 𝑣𝑖+1

𝑖
/𝑣𝑖
𝑖+1 to 𝑣

𝑖+1
𝑖

, respectively.
They are -1 otherwise.

Consider the following change to the curve: take any two succes-

sive vertices 𝑣𝑖 , 𝑣𝑖+1(mod𝑛) , and replace them with 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑖+1 where
𝑣 𝑗 is the third vertex in the triangle that 𝑣𝑖 and 𝑣𝑖+1 are a part of.
This is illustrated in the inset figure. We say that two paths in 𝑀

are homologous if they differ by a sequence of changes above.

3 OPTIMIZATION FRAMEWORK
We consider a framework where we optimize for the spinning 1-

forms directly, using a pair of them to construct a knit graph for

our mesh 𝑀 . One of these forms designates the course rows, 𝜎𝑐 ,

while another designates the wale columns, 𝜎𝑤 . In this section, we

describe the objective and constraints used to find 𝜎𝑐 and 𝜎𝑤 .

3.1 Time Function Guidance Objective
As with several other works, we use a piecewise linear harmonic

time function ℎ that interpolates between 0 and 1 on user-provided

boundaries to denote the desired start and end of the knit. The

gradient ∇ℎ specifies a direction that should be approximately

orthogonal to course rows, and approximately parallel with wale

columns. For specification of course rows, we compare 𝜎𝑐 to the

one-form 𝜔𝑐 , defined on edge 𝑖 𝑗 , with faces 𝑙 and 𝑟 to the left and

right of the edge:

(𝜔𝑐)𝑖 𝑗 =
1

2

(
(∇ℎ)𝑙

| | (∇ℎ)𝑙 | |
+ (∇ℎ)𝑟
| | (∇ℎ)𝑟 | |

)
· e𝑖 𝑗 (3)

In this expression, (∇ℎ)𝑙 and (∇ℎ)𝑟 denote the gradients on faces

𝑙 and 𝑟 , respectively. As can be seen, 𝜔𝑐 averages the integrals of

the normalized (∇ℎ)𝑙 and (∇ℎ)𝑟 along 𝑒𝑖 𝑗 . It reflects the desired
change in the stripe texture function suggested by ∇ℎ over each

edge.

For creation of thewale columns, we compare𝜎𝑤 to an analogous

one-form 𝜔𝑤 . Its expression is the same as Eqn. (3), but with ∇ℎ
replaced by (∇ℎ)⊺ , the vector field obtained by rotating ∇ℎ by 90

◦

with respect to the outward-pointing normal.

The comparison objective is: | |𝑊 (𝜎∗−𝜔∗) | |2, the quadratic norm,

with cotangent weighting (𝑊 diagonal with weights). This is the

analogue of the energy from [Noma et al. 2022] for a face-based

Helix-Free Stripes for Knit Graph Design SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

vector field, which naturally arises from our piecewise-linear time

function ℎ.

3.2 Linear Constraints
3.2.1 Stitch Irregularity Placement. As shown in Fig. 3 & Fig. 6,

stitch irregularities occur at singular triangles, with the birth and

death of stripes occurring there. In the knitting context, this cor-

responds to the ends of short rows in the course context, and in-

creases/decreases in the wale context. Specifying these is as simple

as asking that (𝑑1𝜎∗)𝑚 = 𝑘𝑚 for an integer stripe index 𝑘𝑚 . These

constraints were referred to as “winding number constraints” in

[Noma et al. 2022]. Oftentimes, finer control is desired for exact

stripe placement, and this is achieved in conjunction with the stripe

placement constraints of §3.2.4.

3.2.2 Stripe Alignment Constraints. We may also align stripe pat-

terns to user-specified polylines on the mesh. These can be em-

ployed for design specification of course rows or wale columns, or

can be used to join singular triangles and correct a helical stripe

(see Fig. 6). If used for these purposes, they may also be used in

conjunction with some of the stripe placement constraints of §3.2.4.

Stripe alignment constraints are referred to as “brush” con-

straints in [Noma et al. 2022]. Assuming the polyline notation

adopted in §2.3, these are expressed:

∀𝑖 ∈ {1, . . . , 𝑛 − 1}, 𝑠𝑖+1𝑖 𝜎𝑒𝑖 𝑟
𝑖+1
𝑖 = 𝑠𝑖𝑖+1𝜎𝑒𝑖+1𝑟

𝑖
𝑖+1

It should be noted that the triangles that the polyline extends

through must be non-singular faces, as the stripe texture function

is nonlinear on singular faces. This is the form of the constraint

if 𝑝0 and 𝑝𝑛 lie on edges. In §8 of the supplementary, we extend

these to polylines where the endpoints may lie on the interior of

non-singular faces. If there are 𝑁 sa
stripe alignment constraints, we

denote the polylines {𝛾 sa
𝑗
}𝑁 sa

𝑗=1
and their component edges {𝑒 𝑗

𝑖
}𝑛−1
𝑖=1

.

These constraints may be imposed on cycles within the mesh, if

specification of entire course rows are desired. To obtain boundary

alignment of the stripe pattern (see Fig. 4), we impose this on

mesh boundaries. This simplifies to asking that 𝜎𝑐 = 0 for edges in

𝜕𝑀 . This alignment is important to ensure knittable output at the

Figure 6: Various constraints demonstrated. Left: Stitch ir-
regularity placements at the red triangles with stripe index
+1,−1 induce a helical stripe. Middle: A stripe placement con-
straint (green) and a level set constraint (blue) match up the
singular triangles and eliminate the imposed helix. Right: A
stripe alignment constraint (green) and a level set constraint
(blue) eliminate the helix. Note that the level set constraint
is more flexible, and does not force the stripes to strictly
conform to it.

boundaries, especially when they are not very smooth, i.e., have

high geodesic curvature. This is succinctly expressed as 𝜎𝑐
��
𝜕𝑀

= 0.

3.2.3 Level set constraints. Instead of specifying stripe alignment

exactly, one may also ask that the path integral of 𝜎∗ be equal to 0

along a specified polyline 𝛾 . This ensures that level sets (and thus

stripes) do not cross 𝛾 without ultimately returning to their side of

origin. This is a less restrictive way to join singular triangles and

eliminate helices, as can be seen in Fig. 6.

These are referred to as “rotation order” constraints in [Noma

et al. 2022], and were expressed on open paths as:∫
𝛾

𝜎 =

𝑛−1∑︁
𝑖=0

−𝑠𝑖+1𝑖 𝜎𝑒𝑖 𝑟
𝑖+1
𝑖 + 𝑠𝑖𝑖+1𝜎𝑒𝑖+1𝑟

𝑖
𝑖+1 = 𝐶

for some 𝐶 ∈ R. For 𝜎𝑐 , we only use 𝐶 = 0, while for 𝜎𝑤 non-

trivial values are useful, as noted at the end of this section. As

with stripe alignment constraints, the triangles the polyline passes

through must be non-singular. Furthermore, we argue in §5 of the

supplementary that we can consider, without loss of generality,

only level set constraints over polylines that are along mesh edges.

In this same section, we establish:

Lemma 1. Level set constraints are equivalent when applied to
homologous curves on𝑀′ = 𝑀 \ 𝐾 .

Intuitively, this follows as (𝑑1𝜎)𝑚 is the integral sum around

the boundary of triangle𝑚, and if (𝑑1𝜎)𝑚 = 0, then it should not

matter which “side” of triangle𝑚 that 𝛾 passes on. If there are 𝑁 ls

level set constraints, we denote the polylines {𝛾 ls
𝑗
}𝑁 ls

𝑗=1
.

Helix elimination constraints. Unlike [Noma et al. 2022], we also

consider level set constraints on closed cycles, referring to them as

helix elimination constraints. We characterize helices via the knit

graphs that result from tracing the course and wale stripe patterns

(described in supplementary §3). Any helix in the knit graph arises

from a helical stripe, following a level set that is birthed at one

singular triangle and ends at another. We argue the following two

remarks in supplementary §6, §7.

Remark 1. Helical stripes or level sets may not be defined without
reference to wale stripes, and their intersections with them.

Remark 2. A helical stripe starting at singular triangle 𝑎 and
ending at singular triangle 𝑏, can be effectively eliminated with a

Figure 7: The helical stripe highlighted in yellow is fixed by a
helix elimination constraint imposed along the bright green
cycle.

SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Rahul Mitra, Liane Makatura, Emily Whiting, and Edward Chien

helix elimination constraint along a cycle that separates 𝑎 and 𝑏
locally.

Practically speaking, we use cycles that roughly follow level sets

of the time function. An example of one in action is shown in Fig.

7. If there are 𝑁 he
helix elimination constraints, we denote the

corresponding cycles {𝛾he
𝑗
}𝑁 he

𝑗=1
.

Wale constraints. Lastly, we do specify nontrivial (𝐶 ≠ 0) level set

constraints when optimizing for𝜎𝑤 . On 𝜕𝑀 , we ask that

∫
(𝜕𝑀)𝑖∗

𝜎𝑤 =

𝑃𝑘𝑖∗ for some 𝑘𝑖∗ ∈ Z for each boundary component, except one. The

path integral over the unconstrained boundary will be an integer

multiple of 𝑃 by Thm. 3.1. This guarantees that the wale stripes

“close up” along boundary components (see Fig. 8).

3.2.4 Stripe placement constraints. All previous constraints may

be combined with stripe placement constraints which force stripes

to pass through certain points on the mesh. These can be used

to more precisely place short row ends and increases/decreases,

especially when the mesh is relatively coarse in comparison to the

stripe period 𝑃 .

This is done via path integral constraints along a polyline 𝛾 that

reaches from one of our boundaries to the point in question. From

there, we specify the following integral constraints:∫
𝛾

𝜎 = 𝑃𝑘 + 𝑃
4

, for some 𝑘 ∈ 𝑍

The additional increment of 𝑃/4 is used, as the stripe is centered on
the 𝑃/4 level set of the texture function (by our convention). Note

that the particular path chosen does not matter, as we are merely

trying to specify the stripe function (mod 𝑃). This integral will take

a special form for points inside of triangles, depending on whether

the triangle is singular or not, presented in supplementary §8, §9.

If there are 𝑁 sp
such constraints, we denote the corresponding

polylines {𝛾 sp
𝑗
}𝑁 sp

𝑗=1
, and their integer variables 𝑘

sp

𝑗
.

Lastly, we note that a version of such constraints is used to

achieve stripes tight to all boundaries. This requires a constraint

that adds 𝑃/2 as the additional increment, and is imposed on 𝑁 − 1

paths {𝛾bs
𝑗
}𝑁 bs

𝑗=1
, joining one (arbitrary) root boundary component

to another. This may be seen in Fig. 8.

Figure 8: Effect of wale level set constraints. Left: no con-
straints allows stripe discontinuities near all boundaries;
center:

∫
(𝜕𝑀)1

1

𝜎𝑤 = 𝑃𝑘, 𝑘 ∈ Z allows stripe discontinuities

near (𝜕𝑀)1
0
and (𝜕𝑀)2

1
. Right: constraints imposed on two

boundaries ensures no stripe discontinuities.

4 KNIT GRAPH CREATION
We describe two strategies for using the above objective and con-

straints to optimize for course and wale stripe patterns. Course

pattern optimizations are described first, followed by the necessary

modifications for wale pattern generation.

4.1 Direct Short Row End Pairing (S1)
In this strategy, we assume input of singular triangle placements and

stripe indices, which may be obtained from applying [Knöppel et al.

2015], a heuristic solution to S2 (§4.2), user input, or a combination

of these. These singular triangles and their stripe indices are then

matched with stripe alignment or level set constraints, to ensure

that short rows will be connected by non-helical courses.

As a general guide, the singular triangles should be matched

based on distance on a Reeb graph, computed with respect to the

time function ℎ. In future work, we envision automating this pro-

cess, but currently leave it to the user to specify this approximately,

or deviate from it for design purposes.

The matching constraints usually guarantee that there are no

remaining helices in the knit graph. In some instances, stripe place-

ment constraints must be used to tweak the stripe pattern and

ensure a lack of helices when tracing the pattern. We note that

when the triangles are fine relative to the stripe period, these prob-

lems are unlikely to occur. We show the optimization for 𝜎𝑐 .

min

𝜎𝑐 ,kbs,ksp
| |𝑊 (𝜎𝑐 − 𝜔𝑐) | |2 (4a)

subject to 𝜎𝑐
��
𝜕𝑀

= 0, (4b)

𝑑1𝜎𝑐 = 𝑃k (4c)∫
𝛾 ls
𝑗

𝜎𝑐 = 0, 1 ≤ 𝑗 ≤ 𝑁 ls
(4d)∫

𝛾bs
𝑗

𝜎𝑐 = 𝑃𝑘
bs

𝑗 + 𝑃
2

, 1 ≤ 𝑗 ≤ 𝑁 − 1 (4e)∫
𝛾
sp

𝑗

𝜎𝑐 = 𝑃𝑘
sp

𝑗
+ 𝑃
4

, 1 ≤ 𝑗 ≤ 𝑁 sp
(4f)

𝑠𝑖+1𝑖 𝜎
𝑒
𝑗

𝑖

𝑟 𝑖+1𝑖 = 𝑠𝑖𝑖+1𝜎𝑒 𝑗
𝑖+1
𝑟 𝑖𝑖+1, 1 ≤ 𝑗 ≤ 𝑁 sa, 1 ≤ 𝑖 ≤ 𝑛 − 1

(4g)

Here, 𝜎𝑐 ∈ R |𝐸 | , k𝑏𝑠 ∈ Z𝑁−1
, k𝑠𝑝 ∈ Z𝑁 𝑠𝑝

are the optimization

variables and stripe index constraints are incorporated with k ∈
Z |𝐹 | . The optimization may be solved quickly, as it is a quadratic

mixed-integer problem with few integer variables. More precisely,

the number of integer variables is bounded above by the number

of boundaries and the stripe placement constraints, both typically

small, resulting in quick runtimes (Table 1).

To optimize for 𝜎𝑤 and the resulting wales, we replace 𝜔𝑐 with

𝜔𝑤 and may adjust or remove many of the above constraints. In

particular, we replace (4b) with∫
(𝜕𝑀)𝑖∗

𝜎𝑤 = 𝑃𝑘𝑖∗, 1 ≤ 𝑖 ≤ 𝑁 − 1, (5)

as noted in §3.2.3. Beyond this, there are only stripe index and

possible stripe alignments constraints to consider, so (4e), (4f) and

(4g) are removed.

Helix-Free Stripes for Knit Graph Design SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

4.2 Mixed-Integer Irregularity Placement (S2)
In this strategy, we aim to produce stitch irregularities in geometrically-

informed positions with a global mixed-integer optimization. While

the aim is similar to [Knöppel et al. 2015], our constraints ensure

stripe patterns suitable for knit graph creation. The optimization

problem for 𝜎𝑐 is given by,

min

𝜎𝑐 ,k,kbs
| |𝑊 (𝜎𝑐 − 𝜔𝑐) | |2 (6a)

subject to 𝜎𝑐
��
𝜕𝑀

= 0, (6b)

𝑑1𝜎𝑐 = 𝑃k (6c)∫
𝛾he
𝑗

𝜎𝑐 = 0, 1 ≤ 𝑗 ≤ 𝑁 he
(6d)∫

𝛾bs
𝑗

𝜎𝑐 = 𝑃𝑘
bs

𝑗 + 𝑃
2

, 1 ≤ 𝑗 ≤ 𝑁 − 1 (6e)

𝑠𝑖+1𝑖 𝜎
𝑒
𝑗

𝑖

𝑟 𝑖+1𝑖 = 𝑠𝑖𝑖+1𝜎𝑒 𝑗
𝑖+1
𝑟 𝑖𝑖+1, 1 ≤ 𝑗 ≤ 𝑁 sa, 1 ≤ 𝑖 ≤ 𝑛 − 1

(6f)

The stripe indices, k, are now integer variables, as opposed to

being specified. Application of this strategy requires multiple itera-

tions of the above optimization. Between iterations, helical stripes

are identified and removed with helix elimination constraints ap-

plied along cycles that roughly follow the isocontours of ℎ. As the

number of integer variables are on the order of |𝐹 |, solving to op-

timality is prohibitively expensive. However, good approximate

solutions may be found relatively quickly with mixed-integer opti-

mization packages, e.g., Gurobi [Gurobi Optimization, LLC 2022].

In solving for 𝜎𝑤 for wale columns, we again replace𝜔𝑐 with𝜔𝑤 ,

(6b) with (5), and we drop (6e), (6f). Furthermore, for wale columns,

there is no need to solve the mixed-integer problem multiple times,

as there are no helical stripes to be concerned with.

The above strategies are currently manually applied, but automa-

tion ideas are being pursued as part of future work.

4.3 Level Set Tracing
With course and wale stripe patterns determined via 𝜎𝑐 and 𝜎𝑤 ,

we trace level sets to find knit graph vertices and edges. We first

integrate 𝜎𝑐 and 𝜎𝑤 along a spanning tree of mesh edges and store

the values (mod 𝑃) at the vertices, denoted 𝛼
mod

and 𝛽
mod

, respec-

tively. Locally, these integrated values define two functions, 𝛼 and

𝛽 over each triangle. Intersections of level sets give us the knit

graph vertices. Knit graph edges are constructed per triangle face

by considering the relative values of 𝛼 and 𝛽 at each knit graph

vertex. For knit graph edges going between neighboring triangles,

we create “virtual" knit graph vertices on triangle borders that are

later merged and eliminated in a distance-based manner. A detailed

description of stripe tracing is presented in supplementary §3.

5 RESULTS
We applied the two approaches above to a variety of mesh mod-

els that we illustrate throughout the text and in Fig. 9. Further

commentary is provided in the caption. The resulting knit graphs

were fed to AutoKnit’s [Narayanan et al. 2018] tracer and scheduler

and the knit models are shown, if they successfully completed. All

Table 1: Run time statistics.

Model Strategy #V #F # Int. MIP Solve

Vars. Time, s

Curved S2 54 96 97 < 5

Cylinder (Fig. 7)

Hemisphere S2 224 384 385 40

(Fig. 9(e))

Sock (Fig. 1) S2 279 538 98 21

Sock S1 279 538 2 < 1

(Fig. 9(d))

Cylinder S1 270 580 3 < 1

(Fig. 6, middle)

Cactus S2 391 736 738 35

(Fig. 9(c))

Bunny S2 2669 5228 5230 287

(Fig. 4, right)

models were knit on a 7-gauge Shima Seiki SWG091N2 V-bed knit-

ting machine. Functionally speaking, we consider our knit graph to

be machine-knittable if AutoKnit successfully produces a .dat file.

Downstream issues that arise from the use of individual machines

and their settings are not in the purview of this work. The .dat files

for all models are included in supplementary materials, as well as

raw photos of the successful knits.

We also present some timing data for the optimization problems

of §4. The vanilla Gurobi [Gurobi Optimization, LLC 2022] solver

was used, on a a 2.3GHz Intel Core i5 Macbook Pro with 8GB

of RAM. As can be seen, S1 results in interactive runtimes, due

to the low number of integer variables, while S2 requires use of

approximate heuristic solutions. For S2, optimizations are stopped

at the times listed, determined via user calibration.

Lastly, we present in the supplementary §4 some histograms

of edge length error for knit graph edges. As in [Narayanan et al.

2018], most edge lengths are within 10% of the target length, as

defined by the stripe period 𝑃 .

6 CONCLUSION
We have demonstrated the utility of a spinning-form-based frame-

work for generating course and wale stripe patterns. It provides

smooth knit graphs (Fig. 2), and application of simple linear con-

straints avoids the pitfalls of direct use of [Knöppel et al. 2015] (Fig.

4). In particular, we demonstrate the use of helix elimination con-

straints for eliminating helical stripes, giving us machine-knittable

knit graphs upon tracing, as demonstrated throughout the paper

and in Fig. 9. A thorough discussion of this and other constraints

and their knitting implications is present in §3.2, with accompany-

ing theoretical analysis in the supplementary. Lastly, we believe

that the insights presented here will be useful in other frameworks,

suggesting the use of stripes-based methods to determine posi-

tioning of stitch irregularities, instead of the more commonplace

distance computations and quad meshing.

Limitations/Future Work. Currently, our strategies are manually

implemented, and automating them would be natural to pursue. On

a related note, we do not include any modification of the guiding

vector field for stripe pattern optimization. This could be done via

SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA Rahul Mitra, Liane Makatura, Emily Whiting, and Edward Chien

modification of the time function ℎ or of ∇ℎ and could be done

with any number of vector field design methods. When used in

conjunction with our constraints, this could improve their efficacy

and thus user control.

Lastly, S1 and S2 represent tradeoffs that we’d like to improve.

S1 is fast, but requires input on singularity placement, while S2

requires a lengthy approximate solve time. Much work may still be

done to achieve a method that is both quick and produces globally-

informed singularities. Strategies that come to mind immediately

include using [Knöppel et al. 2015] to set branching priorities in a

branch-and-bound algorithm, or usingmulti-resolution frameworks

to process meshes in a coarse-to-fine manner.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Foundation

(NSF) under Grant No. 2047342 and the National Science Foundation

Graduate Research Fellowship (NSF GRF) under Grant No. 2141064.

We would like to thank James McCann, Kui Wu, and Alexandre

Kaspar for permission to use figures.

REFERENCES
David Bommes, Timm Lempfer, and Leif Kobbelt. 2011. Global Structure Optimization

of Quadrilateral Meshes. Computer Graphics Forum 30, 2 (2011), 375–384.

Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013. Digital

Geometry Processing with Discrete Exterior Calculus. In ACM SIGGRAPH 2013
courses (Anaheim, California) (SIGGRAPH ’13). ACM,NewYork, NY, USA, 126 pages.

Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https://www.

gurobi.com

Allen Hatcher. 2000. Algebraic topology. Cambridge Univ. Press, Cambridge.

Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008. Knitting a 3D Model.

Computer Graphics Forum 27, 7 (2008), 1737–1743.

Benjamin Jones, Yuxuan Mei, Haisen Zhao, Taylor Gotfrid, Jennifer Mankoff, and

Adriana Schulz. 2022. Computational Design of Knit Templates. ACM Transactions
on Graphics 41, 2 (April 2022), 1–16.

Alexandre Kaspar, Liane Makatura, and Wojciech Matusik. 2019. Knitting Skeletons:

Computer-Aided Design Tool for Shaping and Patterning of Knitted Garments.

Proceedings of the ACM Symposium on User Interface Software and Technology (UIST).
Alexandre Kaspar, Kui Wu, Yiyue Luo, Liane Makatura, and Wojciech Matusik. 2021.

Knit Sketching: from Cut & Sew Patterns to Machine-Knit Garments. ACM Trans-
actions on Graphics (Proc. SIGGRAPH) 40, 4 (2021).

Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe patterns

on surfaces. ACM Transactions on Graphics 34, 4 (July 2015), 39:1–39:11.

Georges Nader, Quek-Yu Han, Chia-Pei Zhi, Oliver Weeger, and Sai-Kit Yeung. 2021.

KnitKit. ACM Transactions on Graphics (TOG) (July 2021).

Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James Mccann.

2018. Automatic Machine Knitting of 3D Meshes. ACM Transactions on Graphics
37, 3 (Aug. 2018), 35:1–35:15.

Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual knitting

machine programming. ACM Transactions on Graphics 38, 4 (July 2019), 63:1–63:13.
Yuta Noma, Nobuyuki Umetani, and Yoshihiro Kawahara. 2022. Fast Editing of Singu-

larities in Field-Aligned Stripe Patterns. In SIGGRAPH Asia 2022 Conference Papers
(Daegu, Republic of Korea) (SA ’22). Association for Computing Machinery, New

York, NY, USA, Article 37, 8 pages.

Thibault Tricard, Vincent Tavernier, Cédric Zanni, Jonàs Martínez, Pierre-Alexandre

Hugron, Fabrice Neyret, and Sylvain Lefebvre. 2020. Freely orientable microstruc-

tures for designing deformable 3D prints. ACM Trans. Graph. 39, 6 (2020), 211–1.
Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018. Stitch

meshing. ACM Transactions on Graphics 37, 4 (Aug. 2018), 1–14.
Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable Stitch Meshes. ACM Transac-

tions on Graphics 38, 1 (Feb. 2019), 1–13.
Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch

meshes for modeling knitted clothing with yarn-level detail. ACM Transactions on
Graphics (TOG) (July 2012).

https://www.gurobi.com
https://www.gurobi.com

Helix-Free Stripes for Knit Graph Design SIGGRAPH ’23 Conference Proceedings, August 06–10, 2023, Los Angeles, CA, USA

Figure 9: Results. (a) A forced helix (by specifying offset singular triangles) is fixed with both a level set constraint and a stripe
alignment constraint (see Fig. 6). Both lead to a knit graph with identical connectivity. (b) A forced helix is fixed with a helix
elimination constraint (see Fig. 7). (c) An application of S2 produces a helix-free knit graph for this surface of non-cylinder
topology. (d) A helical stripe is fixed with a stripe placement constraint on the sock model. This complements the use of S2 on
the same model in Fig. 1. (e) An application of S2 produces a reasonable distribution of decreases on this hemispherical model.
Although, we generate a knit graph that is knittable according to [Narayanan et al. 2018], the knitting process failed on two
machines. [Kaspar et al. 2019] discusses potential reasons for failure (e.g. yarn tension). For our purposes, “knittability” is
defined relative to our ability to pass the knit graph constraints of [Narayanan et al. 2018]. The .dat file is presented in the
supplementary material.

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Helix-free Knit Graphs
	2.2 Stripes For Knitting
	2.3 Fast Stripe Editing
	2.4 Homologous Paths

	3 Optimization Framework
	3.1 Time Function Guidance Objective
	3.2 Linear Constraints

	4 Knit Graph Creation
	4.1 Direct Short Row End Pairing (S1)
	4.2 Mixed-Integer Irregularity Placement (S2)
	4.3 Level Set Tracing

	5 Results
	6 Conclusion
	Acknowledgments
	References

