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Abstract— Modern computer security systems are built upon
one-way or trap-door functions. Such one-way functions have
given birth to a class of protocols known as asymmetric cryp-
tographic systems. One-way functions are “easy” to compute
in one direction while being “hard” or computationally very
expensive to compute in the other. Integer factorization is an
example of such a problem i.e., it is very efficient to multiply
two numbers to get a product but factoring that product
is computationally difficult. Numerous cryptographic systems
rely on integer factorization belonging to the Nondeterministic
Polynomial time (NP) class of computational problems. Shor’s
algorithm, published in 1994, presents a Quantum Algorithm
to factorize an integer in polynomial time. In this paper, Shor’s
algorithm and its implications will be discussed. First, the paper
will provide motivation for studying Shor’s algorithm from
a security perspective. After which, the paper will introduce
some necessary background in the analysis of algorithms and
the notion of computational difficulty. The Quantum Fourier
Transform (QFT) and the Quantum Phase Estimation (QPE)
will be discussed at length. In section VI, the paper will
explain how Shor’s algorithms leverages the QPE to factor
in polynomial time. The paper will conclude by presenting
the results from some recent quantum implementations of the
algorithm. This paper attempts to describe the physics and the
importance of Shor’s algorithm for integer factorization.

Keywords — integer factorization, Shor’s algorithm, compu-
tationally difficulty, quantum fourier transform, quantum phase
estimation

I. INTRODUCTION

Numerous security schemes rely on computationally dif-
ficult problems to achieve their security. The most famous
examples include, but are not limited to, RSA encryption [1],
Blum-Blum-Schub (BBS) randomization [2], Diffie-Hellman
Key Exchange [3] and El-Gamal encryption [4]. The security
of these schemes rely on trap door functions, i.e., functions
that have are easy to compute from D → R but difficult to
compute from R → D, without some parameter t.

As an example and motivation for studying Shor’s algo-
rithm, consider briefly, RSA encryption. Bob has a public
key, (n, e) and a private key, (n, d). Here, d is the trapdoor
parameter. If Alice wants to send a message, M to Bob, she
encrypts the messages as C where,

C = Me(mod n) (1)

Bob receives C and recovers M as,

M = Cd(mod n) (2)

Fig. 1: Nature of trap door functions.

Two additional requirements needed for the correctness of
RSA include:

gcd(φ(n), e) = 1, (3)

where φ(n) is Euler’s totient function [5] defined as,

φ(n) = (p− 1)(q − 1) (4)

for some large number, n that is the product of two primes,
p and q. Also,

de mod φ(n) = 1 (5)

Eq (1), (2) and (4) are very easy to compute because
integer multiplication is very efficient on a classical computer
(integer exponentiation maybe represented as a sequence of
repeated multiplications). Euler’s algorithm [6] provides a
very efficient method for computing Eq (3). RSA encryption
is a deep, rich and well-understood topic that is not the
primary focus of this paper. As such, I will not be discussing
the origins of Eq (1) - (5). The reader is directed to [1] for an
in-depth discussion of RSA. However, it is very important to
realize that without parameter, d i.e., the trapdoor parameter,
Bob cannot easily decrypt Alice’s message. In fact, to decrypt
message, M without d would require Bob to find φ(n) i.e.,
Bob would have to find the prime factors of n. This is known
is as the factoring problem and it is of huge significance
to security schemes. Shor’s Algorithm provides an efficient
means of going from R→D without the trapdoor parameter,
d.

Trap door functions have birthed asymmetric cryptosys-
tems that have distinct keys for encryption and decryption.
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These asymmetric systems rely on computationally difficult
problems i.e., computing R → D is infeasible on a classical
computer without the trapdoor parameter, d. Some examples
include the factoring problem used in RSA [1], the discrete
log problem used in the Diffie-Hellman Key Exchange [3]
and the elliptic curve discrete log problem seen in the Elliptic
Curve El Gamal protocol [7].

The next section includes a brief introduction to the notion
of computation and algorithm analysis following which some
prerequisites for Shor’s Algorithm will be discussed.

II. COMPUTATION AND ANALYSIS

A. Model of Computation

1) The Turing Machine: The fundamental computational
model on which algorithms are said to run on is the Turing
Machine [8]. This is an idealized computer with a simple
set of instructions and has unbounded memory. A Turing
Machine has four components [9]:
(a) a program which is the input to the machine
(b) a finite state control which defines the actions of the

machine on the input
(c) an infite tape which is the machine’s memory
(d) a read/write tape-head which points to the position on

the tape which is currently readable or writable

Fig. 2: Components of a Turing Machine [9].

The Turing Machine is the most powerful mathematical
model of computation there is. Any operation/algorithm
that runs on a modern computer can be simulated by a
Turing Machine. In fact, the Church-Turing thesis states
that the class of functions computable by a Turing machine
corresponds exactly to the class of functions which are
computable by an algorithm on a classical computer [9]. It
should be noted here that quantum computers also obey the
Church-Turing thesis i.e., quantum computers and Turing
machines can compute the same class of functions. However,
significantly for this paper, there are functions which can
be computed much more efficiently on a quantum computer
than is “believed” to be possible on a classical computer.
Integer factorization is one such function. Shor’s algorithm
provides an efficient method to factorize an integer on a
quantum computer.

2) Circuits: The notion of a circuit will become extremely
significant in sections IV and V of this paper. A circuit is a
collection of logic gates [9]. Simply defined, a logic gate is

a function f : {0, 1}k → {0, 1}l, for some fixed k input bits
and l output bits. Standard logic gates include AND, OR,
NOT, NAND and NOR. Computation with circuits, known
as the circuit model of computation [9] is equivalent to the
Turing Machine. To qualify this equivalence, the notion of
a uniform circuit family needs to be discussed. A uniform
circuit family is a set of circuits, {Cn} (indexed by n) that
has n input bits and a finite number of extra work bits and
output bits. More particularly, an algorithm/program running
on a Turing Machine generates a uniform circuit family, if
the machine, on input n generates a description of Cn. These
uniform circuit families, generated by Turing Machines can
be made to compute the same class of functions as Turing
Machines themselves. As such, Turing Machines and circuits
are computationally equivalent [9].

B. Analysis of Algorithms

1) Asymptotic Notation: This notation allows for ana-
lyzing the essential behavior of a function, irrespective of
minute changes in computational model [10]. More precisely,
this notation provides a way of analyzing computation (bits
accessed for operations on integers, gates needed for circuit
design, comparisons performed for sorting algorithms etc.)
without being explicit about the exact implementation. For
example, suppose some algorithm to add two n bit integers
needed f(n) = 24n+ 13 gates to perform the computation.
Asymptotically, 24n would dominate f(n). As such, it is
concluded that this algorithm asymptotically grows linearly
as the input size i.e., the number of bits, n grows. In this
instance and in the rest of the paper, the running time of
an algorithm can be expressed as some function, f(n) of
the input size, n. f(n) is descriptive of the number of
primitive operations an algorithm needs to perform in order
to complete some computation. As mentioned before, these
primitive operations may include number of bits accessed for
operations on integers, number of logic gates needed when
building a circuit, number of vertices touched in some graph
computation, number of comparisons needed for a sorting
algorithm etc.

Mathematically, one can set an upper bound on the be-
haviour or “running time” of an algorithm using the O or
“big oh” notation. In particular, f(n) is said to be O(g(n)),
if there are constants c and n0 such that for all n ≥ n0,
f(n) ≤ cg(n). Big O analysis is highly significant when
studying Shor’s algorithm because it allows us to quantify
exactly how much more efficiently a quantum computer can
factorize a number when compared to a classical computer.
One may also formulate a lower bound on the running time
of an algorithm using the Ω or “big omega” notation. f(n)
is said to be Ω(g(n)), if there are constants c and n0 such
that for all n ≥ n0, f(n) ≥ cg(n). Finally, one can conclude
that the running time of an algorithm is “tightly bounded”
by some function g(n) if and only if f(n) is O(g(n)) and
f(n) is Ω(g(n)). When this is the case, f(n) is said to be
Θ(g(n)). Fig. 3 graphically shows these definitions.

2) Complexity Classes: These classes help us to group
algorithms with distinct asymptotic bounds into different
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Fig. 3: Asymptotic Bounds [10].

sets or “classes”. While there are a plethora of complexity
classes, the two most important and relevant for this paper
is the class, P (polynomial time) and the class NP (non-
deterministic polynomial time). The Turing Machine model
of computation is used to formally define P and NP.

Suppose a Turing Machine has states qY for “yes” and qN
for “no” in its finite state control. Supposed this machine
is trying to compute a property about some input, say x.
Some examples of such computation include the primality
of x, the factors of x, the parity of x etc. Notice that
there are only two final states (if the machine ever halts)
- qY and qN which imposes that the nature of computation
provide a binary answer. This does not take away from the
sophistication of the problems a Turing Machine can solve.
In fact, any computational problem may be reduced to a
decision problem i.e., to a problem with a binary answer.
A problem is said to be in TIME(f(n)) if this machine
halts i.e., stops computation at either qN or qY on some
input x in time O(f(n)) where n is the length of x. All
problems solvable in TIME(nk) for some finite k are said
to be polynomial time problems. The collections of problems
in TIME(nk) makes up the class, P. All polynomial time
problems are efficiently solved by a classical computer.

To define the class NP, the highly significant factoring
problem is used. The factoring problem asks the question, for
some integer n, what are its factors? More precisely, there
are two requirements for a problem to be in NP. First, if m is
a non-trivial factor of n, then halting the Turing Machine at
state qY can be done in polynomial time. Second, if m is not
a non-trivial factor of n, then halting the Turing Machine in
state qN can be done in polynomial time. Intuitively, the NP
class essentially constitutes problems whereby, if given some
solution, it is very efficient to check whether that solution is
correct but very inefficient to actually compute that solution
itself. The best-known classical factoring algorithm, the
general number field sieve [11] runs in exponential time
i.e, this algorithm would run in TIME(h(n)) on a Turing
Machine where h(n) is an exponential function. This is
a highly significant fact because Shor’s algorithm actually
uses quantum superposition to improve this computation to
a polynomial time one.

Proving that a given problem cannot be solved in poly-
nomial time is a complex issue and one that is beyond the
scope of this paper. P class problems is obviously a subset
of the NP class of problems. Whether or not all problems
in NP are in P is a question that you can win a $1 million
prize for answering [12] but unfortunately, that issue is also

beyond the scope of this paper. However, most theorists are
fairly confident that P 6= NP i.e., there are problems in P that
are not in NP although a formal proof is yet to be presented.

III. QUANTUM COMPUTATION

1) Qubits: Much like classical bits, quantum bits (“qubit”)
exist in two possible states, when measured [9]. These are
the states, |0〉 and |1〉. While a classical bit must be either in
state 0 or state 1, a qubit can be in a state other than |0〉 and
|1〉 up until the point of measurement. It is possible to create
a superposition state which is a simple linear combination
of states such as:

|Ψ〉 = α|0〉+ β|1〉 (6)

The states |0〉 and |1〉 are known as the computational
basis states. The numbers, α and β exist in the complex
plane. Therefore, the state of a qubit is said to exist in a two-
dimensional complex vector space. Also, the state vectors |0〉
and |1〉 are given by,

|0〉 =

[
1
0

]
(7)

|1〉 =

[
0
1

]
(8)

When measuring a qubit, there is a collapse to either state
|0〉 with probability |α|2 or state |1〉 with probability |β|2.
Since there are only two possible states for a single qubit
system, |α|2 + |β|2 must equal 1. When a superposition state
adheres to this property, it is said to be norm preserving or
normalized.

The state, |Ψ〉 may also be written in terms of the relative
phase between the states, |0〉 and |1〉. In this notation, the
relative phase, φ, α and β may be confined to real numbers.

|Ψ〉 = α|0〉+ eiφβ|1〉, α, β, φ ∈ R (9)

α and β may be further defined in terms of a single
variable, θ.

α = cos

(
θ

2

)
(10)

β = sin

(
θ

2

)
(11)

With these substitutions, the state |Ψ〉 is still normalized
and θ, φ ∈ R. This allows us to represent a state on the
surface of a sphere, known as the Bloch Sphere where θ ∈
[0, π], φ ∈ [0, 2π] and r = 1 because the the state must be
normalized i.e, the magnitude of the qubit is 1.

3



Fig. 4: Bloch Sphere representation of a qubit state.

2) Single Qubit Quantum Gates: Quantum gates allows
for changing the state of a qubit. Gates acting on a single
qubit can be represented by a 2 × 2 matrix [9]. However,
these gates, after acting on a qubit state, must result in a
norm-preserving state. The norm preservation of the resultant
states is guaranteed by the fact that all quantum gates must
be unitary i.e, if some gate is described by the matrix, U
then UU† = I . As an example, consider the Pauli-X matrix.

X =

[
0 1
1 0

]
(12)

Clearly, XX† = I . Applying X on state |0〉,

X|0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉 (13)

From Eq (13), it is seen that the Pauli-X gate acts as the
classical NOT gate flipping the amplitudes of the |0〉 state
vector and the |1〉 state vector.

A very significant quantum gate is the Hadamard gate
given by the matrix,

H =
1√
2

[
1 1
1 −1

]
(14)

Applying H on |0〉 gives,

H|0〉 =
1√
2

[
1 1
1 −1

]
|0〉

=
1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
=

1√
2

[|0〉+ |1〉] = |q〉

(15)

The state |q〉 is commonly referred to as the |+〉 state.
Similarly,

H|1〉 =
1√
2

[|0〉 − |1〉] = |−〉 (16)

The states |+〉 and |−〉 are very significant because they
lie on the equatorial plane of the Bloch sphere i.e., the state
vectors, |0〉 and |1〉 have been rotated away from the poles
of the Bloch sphere. The Hadamard gate applies a change
of basis from the Z-basis (also known as the computational
basis defined earlier) to the X-basis, also called the Fourier
basis.

(a) Quantum circuit
representing the CNOT gate.

(b) Truth table for the CNOT
gate. The target bit is

represented by t and the
control bit is shown by c.

Fig. 5: CNOT quantum circuit and truth table

3) Multiple Qubits and Multi Qubit Gates: While single
qubits have two possible states, two qubits would have four
possible states. If a is a four qubit state vector, there would
be four complex amplitudes i.e.,

|a〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉 (17)

This can also be represented as 4-D vector given by,

|a〉 =


a00
a01
a10
a11

 (18)

As always, the 4-D state vector |a〉 must be normalized.

Two separate qubits, |b〉 =

[
b0
b1

]
and |a〉 =

[
a0
a1

]
can be

represented as a collective single state using a tensor product
[9].

|ba〉 = |b〉 ⊗ |a〉 =


b0 ×

[
a0
a1

]

b1 ×
[
a0
a1

]


=


b0a0
b0a1
b1a0
b1a1


(19)

In general, an n qubit system will require 2n complex
amplitudes to keep track of the whole system. Because the
number of qubits required grows exponentially, it very dif-
ficult to simulate a quantum computer (or quantum circuits)
on any classical system [9].

The CNOT gate takes two qubits as input. This gate is a
conditional gate that performs an X-gate on the target qubit,
if the state of the control qubit is |1〉. A sample output of
the CNOT gate is given by fig. 5.

The CNOT shown in the circuit in fig. 5 takes the
following matrix form,
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CNOT =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (20)

So if,

|a〉 =


a00
a01
a10
a11

 (21)

then,

CNOT |a〉 =


a00
a11
a10
a01

 (22)

Notice that the CNOT gate swapped the amplitudes of |01〉
and |11〉 in the state vector, |a〉.

In classical computation, the NAND gate is known as the
universal gate because any function can be computed from a
composition of NAND gates alone. In Quantum Computing,
the analogous rule states the following: “Any multiple qubit
logic gate may be composed from CNOT gates and single
qubit gates” [9].

IV. QUANTUM FOURIER TRANSFORM

1) Definition: The discrete Fourier transform takes some
vector x = (x0, x1, ...., xN−1) and maps it to some other
vector y = (y0, y1, ...., yN−1) using the following,

yk =
1√
N

N−1∑
j=0

xjω
jk
N (23)

where,

ωjkN = e
2πijk
N (24)

Similarly, the Quantum Fourier transform (QFT), acts on
a state

∑N−1
i=0 xi|x〉 and maps to another quantum state∑N1

i=0 yi|y〉 using,

yk =
1√
N

N−1∑
j=0

xjω
jk
N (25)

where, ωjkN is defined as above. The QFT only affects the
amplitudes of the state. The QFT can also be represented as
the following map,

|x〉 → 1√
N

N−1∑
j=0

ωxyN |y〉 (26)

In unitary matrix form,

UQFT =
1√
N

N−1∑
x=0

N−1∑
y=0

ωxyN |y〉〈x| (27)

where, 〈x| is the row vector representation of the column
vector, |x〉. Any row vector, “bra” has a corresponding
column vector, “ket” and these vectors can be converted
between one another using the conjugate transpose [13].

Essentially, the QFT transforms between two basis states
i.e, it takes state vectors in the Computational Basis and
transforms it to a state vector in the Fourier Basis. States in
the Fourier Basis are often represented as |x̃〉 i.e,

QFT |x〉 → |x̃〉 (28)

As stated above, the Hadamrd gate is the single qubit QFT
because it takes the Computational Basis states, |0〉, |1〉 and
transforms them to the Fourier Basis states, |+〉 and |−〉.
Because the Hadamard gate acts on the single qubit state,
|Ψ〉 = α|0〉 + β|1〉, the number of amplitudes, N = 2.
Similarly, all multiqubit states in the Computational Basis
can be transformed to states in the Fourier basis. In particular,
the QFT is defined for any arbitrary number of amplitudes,
N .

Define QFTN that acts on a multiqubit state, |x〉 =
|x1.....xn〉, where x1 is the most significant quibit. Then,
from the definition above, N = 2n.

Without proof, QFTN is presented as,

QFTN |x〉 =
1√
N

(|0〉+ e
2πi
21
x|1〉)⊗ 1√

N
(|0〉+ e

2πi
22
x|1〉)⊗

...⊗ 1√
N

(|0〉+ e
2πi

2n−1 x|1〉)⊗ 1√
N

(|0〉+ e
2πi
2n x|1〉)

(29)

For a strict derivation of Eq. (29), the reader is directed
to [9].

2) Circuit that implements the QFT: The QFT ciruit
makes use of two gates. The first is the single qubit
Hadamard gate, H , where,

H|xk〉 =
1√
2

(|0〉+ exp(
2πi

2
xk)|1〉) (30)

The second gate is a two qubit controlled rotation,
CROTk, whose matrix definition is given by,

CROTk|xk〉 =

[
1 0
0 UROTk

]
(31)

UROTk is defined as,

UROTk =

[
1 0
0 exp( 2πi

2k
)

]
(32)

Assume CROTk acts on a two qubit state, |xlxj〉. As-
suming the first qubit is the control and the second qubit is
the target, CROTk’s action is defined by,

CROTk|0xj〉 = |0〉xj (33)

and,

CROTk|1xj〉 = exp(
2πi

2k
)xj |1xj〉 (34)
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The circuit that implements a QFT is shown in fig. 6.
Notice that the circuit has been partitioned into positions,
1, 2, 3 and 4.

Fig. 6: Circuit that implements a QFT

Assume as input, an n-qubit input state, |x〉 = |x1x2...xn〉.
1) After the first Hadamard gate at position 1 acts on qubit

1:

H|x1x2...xn〉 =
1√
2

(|0〉+ exp(
2πi

2
x1)|1〉)

⊗|x2x3...xn〉
(35)

2) After the UROT2 on qubit 1 controlled by qubit 2 in
position 2, the state is given by

1√
2

[|0〉+ exp(
2πi

22
x2 +

2πi

21
x1)|1〉]

⊗|x2x3...xn〉
(36)

3) After the last UROTn gate on qubit 1 controlled by
qubit n in position 3, the state is given by

1√
2

[|0〉+ exp(
2πi

2n
xn +

2πi

2n−1
xn−1

+...
2πi

21
x1)|1〉]⊗ |x2x3...xn〉

(37)

Observing that,

x = 2n−1x1 + 2n−2x2 + ...+ 21xn−1 + 20xn (38)

Eq. (37) can be re-written as,

1√
2

[|0〉+ exp(
2πi

2n
x)|1〉]⊗ |x2x3...xn〉 (39)

4) After the application of the same sequence of gates for
qubits 2...n, the final state is given by,

1√
2

(|0〉+ exp(
2πi

2n
x)|1〉)⊗ 1√

2
(|0〉+ exp(

2πi

2n−1
x)|1〉)

⊗...⊗ 1√
2

(|0〉+ exp(
2πi

21
x)|1〉)

(40)

Eq. (40) is exactly the QFT |x〉 defined in Eq. (29) with
the only difference being that the order of qubits is reversed.
Swap operations are then used to reverse the ordering of
qubits.

To analyze the performance of this circuit, it is observed
that a Hadamard gate is applied to the first qubit followed by
(n−1) conditional rotations for a total of n gates. Similarly,
a Hadamard gate is applied to the second qubit followed

by (n − 2) conditional rotations and so on. There is an
upper bound of n/2 swap gates that can be used. So the
total number of gates is given by the function f(n),

f(n) = [n+ (n− 1) + (n− 2) + ...+ 1] +
n

2

=
n(n+ 2)

2
+
n

2

(41)

By the definition from section II, f(n) is tightly bound by
the n2 term in Eq. (41) i.e., f(n) is Θ(n2). Comparing this
to the performance of best classical algorithm to compute the
Fourier Transform, the Fast Fourier Transform (FFT) which
has a running time bounded by Θ(n2n), it is seen that the
QFT requires exponentially fewer gates than the FFT [9].

V. QUANTUM PHASE ESTIMATION

Quantum Phase Estimation (QPE) is a central part of
Shor’s algorithm. Given some unitary operator, U , the Quan-
tum Phase Estimation Algorithm estimates θ given,

U |ψ〉 = e2πiθ|ψ〉 (42)

Here, ψ and e2πiθ are eigenvectors and eigenvalues re-
spectfully of the unitary operator, U . QPE makes use of the
inverse QFT. The inverese QFT, QFT † is simply the QFT
with all the gates inverted, noting that for arbitrary gates A,
B and C,

(ABC)† = C†B†A† (43)

Fig. 7: Circuit that implements a QPE

The circuit that implements a QPE is shown in fig. 7.
1) |ψ〉 is in one set of qubit registers. The counting register

has an additional set of t qubits which will store the
value 2tθ.

ψ0 = |0〉⊗t|ψ〉 (44)

2) The circuit applies t Hadamard gates on the counting
register, H⊗t.

ψ1 =
1

2
t
2

(|0〉+ |1〉)⊗t|ψ〉 (45)

3) The controlled unitary operation is applied on the target
register storing, |ψ〉 only if the corresponding control bit
is |1〉.
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U2j |ψ〉 = U2j−1

U |ψ〉 = U2j−1

e2πiθ|ψ〉 = e2πi2
jθ|ψ〉

(46)

The circuit applies all t controlled operations with 0 ≤
j ≤ t− 1

ψ2 =
1

2
t
2

(|0〉+ e2πiθ2
t−1

|1〉) ⊗ ...⊗

1

2
t
2

(|0〉+ e2πiθ2
1

|1〉)⊗ 1

2
t
2

(|0〉+ e2πiθ2
0

|1〉)⊗ |ψ〉
(47)

Using the relation [9],

|0〉⊗|ψ〉+ |1〉⊗e2πiθ|ψ〉 = (|0〉+e2πiθ|1〉)⊗|ψ〉 (48)

Eq. (47) can be rewritten as,

ψ2 =
1

2
t
2

2t−1∑
k=0

e2πik|k〉 ⊗ |ψ〉 (49)

where k is the integer representation of the n bit binary
numbers.

4) Comparing Eq. (49) with Eq. (40) (noting that (
√

2)t =
2
t
2 ) from Section IV, it is seen that ψ2 is the exact result

of applying a QFT by replacing x (in Eq. (40)) with 2tθ
(in Eq. (49)). To recover the state 2tθ, the QFT † should
be applied.

|ψ3〉 = ψ2
QFT †−→ 1

2t

(2t−1)∑
x=0

(2t−1)∑
k=0

e
−2πik

2t
(x−2tθ)|x〉 ⊗ |ψ〉

(50)

5) Finally, a measurement is made on the first register. ψ3

“peaks” near x = 2tθ when 2tθ ∈ Z [9].

|ψ4〉 = |2tθ〉 ⊗ |ψ〉 (51)

In the case when 2tθ /∈ Z, the above expression still
peaks near x = 2tθ with probability slightly better than
4
π2 ≈ 40%.

VI. SHOR’S ALGORITHM

In section I, the importance and implications of factor-
ing a number was introduced. Section II discussed how
prime factorization on a classical computer has no efficient
algorithm (as of yet, this may change in the future). In
particular, the general number field sieve, the most efficient
algorithm to factor a number on a classical computer runs in
O(exp(1.9(logN)

1
3 (loglogN)

2
3 )), where N is the number

of bits required to encode the input. In contrast, Shor’s
algorithm runs in O((logN)2(loglogN)(logloglogN)). Ig-
noring the exact nature of the running times given by both
algorithms, it is observed that Shor’s algorithm is almost
exponentially faster than the general number field sieve.
A high-level overview of Shor’s algorithm is shown in
Algorithm 1.

Algorithm 1 Shor’s Algorithm

1: Problem: Find the prime factors of N
2: N = p× q, for primes p and q
3: pick a such that gcd(a,N) = 1
4: find smallest r such that ar ≡ 1 mod (N)
5: if r is even then
6: define x ≡ a r2 mod(N)
7: if x+ 1 6≡ 0 mod(N) then
8: {p, q} = {gcd(x+ 1, N), gcd(x− 1, N)}
9: done

10: end if
11: else
12: pick another a such that gcd(a,N) = 1
13: find r such that ar ≡ 1 mod (N)
14: go to line 5
15: end if

In step 4, the smallest r such that ar ≡ 1 mod (N)
is known as the “order” of the function ar mod (N).
Also, in step 3, if a is picked such that gcd(a,N) 6= 1
i.e., gcd(a,N) = a, then a is one of the factors of N .
N is then divided by a to find the other factor and the
problem is trivially solved. While non-zero, the probability
of picking such an a in step 3 is minuscule. Algorithm 1
is fundamentally how Shor’s algorithm converts a factoring
problem to a period finding problem. The problem now is
redefined: “Given some N , find r”. All the other steps can
be done in polynomial time on a classical computer. The
reader is directed to [6] for a detailed review on the modular
arithmetic involved.

Shor’s algorithm uses Quantum Phase Estimation (QPE)
on the unitary operator, U . For some a, N and state |y〉, U ’s
action is defined by,

U |y〉 = |ay modN〉 (52)

For example, for a = 3, N = 35 and starting with state,
|1〉, after applying U for r iterations, state |1〉 is re-obtained.

U |1〉 = |3〉
U2|1〉 = |9〉

(53)

This repeated application would continue until,

U (r−1)|1〉 = |12〉
Ur|1〉 = |1〉

(54)

For the given a and N , r happens to be 12. A superposition
of states in this cycle would be given by,

|u0〉 =
1√
r

(r−1)∑
k=0

|ak modN〉 (55)

Notice that the eigenvalues of the states in this cycle don’t
have r in them. However, a different superposition (|u1〉)
could be constructed such that the phase of the kth state is
proportional to k. That is, in this cycle (|u1〉), the phase is
different for each of the computational basis states.
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|u1〉 =
1√
r

(r−1)∑
k=0

e−
2πik
r |ak modN〉 (56)

So,

U |u1〉 =
2πi

r
|u1〉 (57)

Eq. (57) does not represent the only eigenstate with this
behaviour. To generalize this further, the phase in Eq. (56)
can be multiplied by some integer, s to give

|us〉 =
1√
r

(r−1)∑
k=0

e−
2πisk
r |ak modN〉 (58)

and,

U |us〉 =
2πis

r
|us〉 (59)

Notice that s produces a unique eigenstate where, 0 ≤ s ≤
(r − 1). Summing over all possible values of s i.e., over all
the eigenstates, all the states cancel out in the computational
basis except |1〉 i.e,

1√
r

(r−1)∑
s=0

|us〉 = |1〉 (60)

Since, |1〉 is a superposition of all eigenstates, performing
a QPE on U using the state |1〉, the measurement will peak
[9] at the following value,

φ =
s

r
(61)

The range of s is 0 to (r − 1). The efficient continued
fractions algorithm [6] can be used on φ to find r.

The most general form of U is given by,

U2j |y〉 = |a2
j

y modN〉 (62)

Computing a2
j

can be done efficiently on a classical
computer using the repeated squaring algorithm [14]. The
circuit that implements Shor’s algorithm is shown in fig. 8.

Fig. 8: Circuit for Shor’s Algorithm

The top register contains the state, |0〉 onto which the
order, r is to be encoded. The second register contains, |1〉,
which is a superposition of states. After the U gates perform
modular exponentiation, a QFT † is performed on the top
register. A measurement of the top register yields φ from Eq.
(61) with high probability and, r can be obtained. Notice that
Shor’s algorithm, represented by fig. 8 fundamentally boils
down to the QPE algorithm, represented by fig. 7.

VII. DISCUSSION & CONCLUSION

Recall from Section VI that there is no exponential term
in the running time of Shor’s algorithm. The speed-up in
Shor’s algorithm stems from the cancelling out of states in
the computational basis that leads to Eq. (60). Also, from Eq.
(51), it is seen that measuring 2nθ on the top register where,
θ is the phase is very likely in fig. 8. Once that measurement
is made, the efficient classical continued fractions algorithm
may be used to find r.

Significantly, Shor’s algorithm solves the problem of in-
teger factorization in polynomial time. There is no known
classical algorithm that factorizes an integer in polynomial
time. In fact, it is strongly believed that integer factorization
does not belong to the class, P in classical computation i.e.,
the problem itself cannot be solved in polynomial time. The
security protocols discussed in Section I of this paper heavily
rely on integer factorization not belonging to P for their
security.

Though originally published in 1994 [15], factorization
using Shor’s Algorithm is a relatively young field. The largest
successful factoring was N = 21 published in 2012 [16].
This beat the previous record of N = 15 published in 2001
[17]. In recent years, physicists are realizing the limitations
of current quantum hardware. In 2019, Amico et al. claims
that Shor’s, implemented on current hardware, fails to factor
35 [18]. Due to such hardware constraints, progress made on
the pure implementation of Shor’s algorithm has generally
stopped in favor of combinatorial approaches using quantum
adiabatic computers and parameter optimization [19]. Still,
the existence of a polynomial time factoring algorithm has
far-reaching implications. Shor’s algorithm might be one
quantum hardware advancement away from being realized
in every quantum computer. If that is ever the case, security
protocols that rely on NP problems will either become
completely futile or will have to obtain their security from
elsewhere.
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